Spaces:
Build error
Build error
import asyncio | |
import os | |
import pandas as pd | |
from datasets import load_dataset | |
from evaluation.utils.shared import ( | |
EvalMetadata, | |
EvalOutput, | |
codeact_user_response, | |
compatibility_for_eval_history_pairs, | |
get_default_sandbox_config_for_eval, | |
make_metadata, | |
prepare_dataset, | |
reset_logger_for_multiprocessing, | |
run_evaluation, | |
) | |
from openhands.controller.state.state import State | |
from openhands.core.config import ( | |
OpenHandsConfig, | |
get_llm_config_arg, | |
get_parser, | |
) | |
from openhands.core.logger import openhands_logger as logger | |
from openhands.core.main import create_runtime, run_controller | |
from openhands.events.action import ( | |
AgentFinishAction, | |
CmdRunAction, | |
IPythonRunCellAction, | |
MessageAction, | |
) | |
from openhands.events.observation import CmdOutputObservation | |
from openhands.runtime.base import Runtime | |
from openhands.utils.async_utils import call_async_from_sync | |
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = { | |
'CodeActAgent': codeact_user_response, | |
} | |
AGENT_CLS_TO_INST_SUFFIX = { | |
'CodeActAgent': 'When you think you have solved the question, please first send your answer to user through message and then exit.\n' | |
} | |
def get_config( | |
metadata: EvalMetadata, | |
) -> OpenHandsConfig: | |
sandbox_config = get_default_sandbox_config_for_eval() | |
sandbox_config.base_container_image = 'xingyaoww/od-eval-logic-reasoning:v1.0' | |
sandbox_config.runtime_extra_deps = ( | |
'$OH_INTERPRETER_PATH -m pip install scitools-pyke' | |
) | |
config = OpenHandsConfig( | |
default_agent=metadata.agent_class, | |
run_as_openhands=False, | |
runtime='docker', | |
max_iterations=metadata.max_iterations, | |
sandbox=sandbox_config, | |
# do not mount workspace | |
workspace_base=None, | |
workspace_mount_path=None, | |
) | |
config.set_llm_config(metadata.llm_config) | |
agent_config = config.get_agent_config(metadata.agent_class) | |
agent_config.enable_prompt_extensions = False | |
return config | |
def get_choice(answer_str): | |
choices = [ | |
'A', | |
'B', | |
'C', | |
'D', | |
'E', | |
'F', | |
'G', | |
'H', | |
'A)', | |
'B)', | |
'C)', | |
'D)', | |
'E)', | |
'F)', | |
'G)', | |
'H)', | |
'A.', | |
'B.', | |
'C.', | |
'D.', | |
'E.', | |
'F.', | |
'G.', | |
'H.', | |
] | |
for c in choices: | |
if answer_str.startswith(c): | |
return c.replace(')', '') | |
if answer_str.startswith(':'): | |
return answer_str.replace(':', '').replace('.', '').strip() | |
return None | |
def get_test_result( | |
model_answer: str, | |
ground_truth: str, | |
) -> dict[str, bool]: | |
gold_answer = ground_truth.replace('(', '').replace(')', '').strip() | |
answer_str = model_answer if model_answer is not None else '' | |
prediction = get_choice(answer_str) | |
indicators = [ | |
'the correct option is', | |
'the correct answer is', | |
'The correct answer is', | |
'The correct option is', | |
'the answer is', | |
] | |
if prediction is None: | |
for indicator in indicators: | |
if answer_str.find(indicator) >= 0: | |
answer_str = answer_str.split(indicator)[1].strip() | |
prediction = get_choice(answer_str) | |
break | |
isTrue = prediction == gold_answer | |
test_result = {'result': isTrue} | |
return test_result | |
CUR_EVAL_DIR = os.path.dirname(__file__) | |
def initialize_runtime( | |
runtime: Runtime, | |
instance: pd.Series, # this argument is not required | |
): | |
"""Initialize the runtime for the agent. | |
This function is called before the runtime is used to run the agent. | |
""" | |
logger.info(f'{"-" * 50} BEGIN Runtime Initialization Fn {"-" * 50}') | |
obs: CmdOutputObservation | |
# Set instance id | |
action = CmdRunAction(command='mkdir -p /workspace') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
action = CmdRunAction(command='cd /workspace') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
# copy logic_inference.py to /workspace | |
runtime.copy_to(os.path.join(CUR_EVAL_DIR, 'logic_inference.py'), '/workspace') | |
# check if the file exists | |
obs = runtime.run_action(CmdRunAction(command='ls /workspace')) | |
assert obs.exit_code == 0 | |
assert 'logic_inference.py' in obs.content | |
runtime.add_env_vars({'DATASET_NAME': metadata.dataset}) | |
action = CmdRunAction(command='mkdir -p /workspace/.cache_program') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
action = IPythonRunCellAction(code='%pip install scitools-pyke') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
ipynb_obs = runtime.run_action(action) | |
logger.info(ipynb_obs, extra={'msg_type': 'OBSERVATION'}) | |
logger.info(f'{"-" * 50} END Runtime Initialization Fn {"-" * 50}') | |
# Prepare instruction | |
with open(os.path.join(CUR_EVAL_DIR, 'instruction.txt'), 'r') as f: | |
INSTRUCTION_TEMPLATE = f.read() | |
def process_instance( | |
instance: pd.Series, | |
metadata: EvalMetadata, | |
reset_logger: bool = True, | |
): | |
config = get_config(metadata) | |
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation | |
if reset_logger: | |
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') | |
reset_logger_for_multiprocessing(logger, instance['instance_id'], log_dir) | |
else: | |
logger.info(f'Starting evaluation for instance {instance["instance_id"]}.') | |
instance_logic_programs = instance['raw_logic_programs'][0].strip() | |
instruction = ( | |
INSTRUCTION_TEMPLATE.replace('[[dataset_name]]', dataset_name) | |
.replace('[[logic_programs]]', instance_logic_programs) | |
.replace('[[logic_inference_path.py]]', '/workspace/logic_inference.py') | |
) | |
# NOTE: You can actually set slightly different instruction for different agents | |
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class] | |
runtime = create_runtime(config) | |
call_async_from_sync(runtime.connect) | |
initialize_runtime(runtime, instance) | |
# Here's how you can run the agent (similar to the `main` function) and get the final task state | |
state: State | None = asyncio.run( | |
run_controller( | |
config=config, | |
initial_user_action=MessageAction(content=instruction), | |
runtime=runtime, | |
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get( | |
metadata.agent_class | |
), | |
) | |
) | |
# ======= Attempt to evaluate the agent's edits ======= | |
# If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction) | |
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation. | |
if state is None: | |
raise ValueError('State should not be None.') | |
final_message = '' | |
for event in reversed(state.history): | |
if isinstance(event, AgentFinishAction): | |
final_message = event.thought | |
break | |
elif isinstance(event, MessageAction): | |
final_message = event.content | |
break | |
final_message = final_message.strip("'") | |
logger.info( | |
f'Predicted answer: {final_message}, Ground truth: {instance["answer"]}' | |
) | |
test_result = get_test_result( | |
model_answer=final_message, ground_truth=instance['answer'] | |
) | |
test_result['final_message'] = final_message | |
metrics = state.metrics.get() if state.metrics else None | |
# history is now available as a stream of events, rather than list of pairs of (Action, Observation) | |
# for compatibility with the existing output format, we can remake the pairs here | |
# remove when it becomes unnecessary | |
histories = compatibility_for_eval_history_pairs(state.history) | |
# Save the output | |
output = EvalOutput( | |
instance_id=instance['instance_id'], | |
instruction=instruction, | |
metadata=metadata, | |
history=histories, | |
metrics=metrics, | |
error=state.last_error if state and state.last_error else None, | |
test_result=test_result, | |
) | |
return output | |
if __name__ == '__main__': | |
parser = get_parser() | |
parser.add_argument( | |
'--dataset', | |
type=str, | |
help='the logic reasoning dataset to evaluate on {ProntoQA, ProofWriter}', | |
default='ProofWriter', | |
) | |
parser.add_argument( | |
'--data-split', | |
type=str, | |
help='data split to evaluate on {validation}', # right now we only support validation split | |
default='validation', | |
) | |
args, _ = parser.parse_known_args() | |
dataset_name = args.dataset | |
data_split = args.data_split | |
dataset = load_dataset(f'renma/{dataset_name}') | |
dataset_df = dataset[data_split].to_pandas() | |
dataset_df.rename(columns={'id': 'instance_id'}, inplace=True) | |
llm_config = None | |
if args.llm_config: | |
llm_config = get_llm_config_arg(args.llm_config) | |
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results | |
llm_config.modify_params = False | |
if llm_config is None: | |
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}') | |
metadata = make_metadata( | |
llm_config, | |
dataset_name, | |
args.agent_cls, | |
args.max_iterations, | |
args.eval_note, | |
args.eval_output_dir, | |
) | |
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') | |
instances = prepare_dataset(dataset_df, output_file, args.eval_n_limit) | |
run_evaluation( | |
instances, metadata, output_file, args.eval_num_workers, process_instance | |
) | |