Spaces:
Build error
Build error
import asyncio | |
import os | |
from typing import Any | |
import pandas as pd | |
from evaluation.benchmarks.toolqa.utils import encode_question, eval_answer, get_data | |
from evaluation.utils.shared import ( | |
EvalMetadata, | |
EvalOutput, | |
codeact_user_response, | |
compatibility_for_eval_history_pairs, | |
get_default_sandbox_config_for_eval, | |
make_metadata, | |
prepare_dataset, | |
reset_logger_for_multiprocessing, | |
run_evaluation, | |
) | |
from openhands.controller.state.state import State | |
from openhands.core.config import ( | |
OpenHandsConfig, | |
get_llm_config_arg, | |
get_parser, | |
) | |
from openhands.core.logger import openhands_logger as logger | |
from openhands.core.main import create_runtime, run_controller | |
from openhands.events.action import CmdRunAction, MessageAction | |
from openhands.events.observation import CmdOutputObservation | |
from openhands.runtime.base import Runtime | |
from openhands.utils.async_utils import call_async_from_sync | |
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = { | |
'CodeActAgent': codeact_user_response, | |
} | |
AGENT_CLS_TO_INST_SUFFIX = { | |
'CodeActAgent': 'When you think you have completed the request, please finish the interaction using the "finish" tool.\n' | |
} | |
def get_config( | |
metadata: EvalMetadata, | |
) -> OpenHandsConfig: | |
sandbox_config = get_default_sandbox_config_for_eval() | |
sandbox_config.base_container_image = 'python:3.12-bookworm' | |
config = OpenHandsConfig( | |
default_agent=metadata.agent_class, | |
run_as_openhands=False, | |
runtime='docker', | |
max_iterations=metadata.max_iterations, | |
sandbox=sandbox_config, | |
# do not mount workspace | |
workspace_base=None, | |
workspace_mount_path=None, | |
) | |
config.set_llm_config(metadata.llm_config) | |
agent_config = config.get_agent_config(metadata.agent_class) | |
agent_config.enable_prompt_extensions = False | |
return config | |
def initialize_runtime(runtime: Runtime): | |
"""Initialize the runtime for the agent. | |
This function is called before the runtime is used to run the agent. | |
""" | |
logger.info(f'{"-" * 50} BEGIN Runtime Initialization Fn {"-" * 50}') | |
obs: CmdOutputObservation | |
# Set instance id | |
action = CmdRunAction(command='mkdir -p /workspace') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
action = CmdRunAction(command='cd /workspace') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
runtime.add_env_vars({'WOLFRAM_ALPHA_APPID': args.wolfram_alpha_appid}) | |
logger.info(f'{"-" * 50} END Runtime Initialization Fn {"-" * 50}') | |
def process_instance(instance: Any, metadata: EvalMetadata, reset_logger: bool = True): | |
config = get_config(metadata) | |
qid = instance.qid | |
question = instance.question | |
answer = instance.answer | |
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation | |
if reset_logger: | |
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') | |
reset_logger_for_multiprocessing(logger, qid, log_dir) | |
else: | |
logger.info(f'Starting evaluation for instance {qid}.') | |
# Prepare instruction | |
instruction = encode_question(question) | |
instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n' | |
# NOTE: You can actually set slightly different instruction for different agents | |
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class] | |
logger.info(f'Instruction:\n{instruction}', extra={'msg_type': 'OBSERVATION'}) | |
runtime = create_runtime(config) | |
call_async_from_sync(runtime.connect) | |
initialize_runtime(runtime) | |
# Here's how you can run the agent (similar to the `main` function) and get the final task state | |
state: State | None = asyncio.run( | |
run_controller( | |
config=config, | |
initial_user_action=MessageAction(content=instruction), | |
runtime=runtime, | |
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[ | |
metadata.agent_class | |
], | |
) | |
) | |
# ======= Attempt to evaluate the agent's edits ======= | |
# If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction) | |
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation. | |
if state is None: | |
raise ValueError('State should not be None.') | |
# retrieve the last message from the agent | |
last_agent_message = state.get_last_agent_message() | |
model_answer_raw = last_agent_message.content if last_agent_message else '' | |
# attempt to parse model_answer | |
correct = eval_answer(str(model_answer_raw), str(answer)) | |
logger.info(f'Final message: {model_answer_raw} | Correctness: {correct}') | |
metrics = state.metrics.get() if state.metrics else None | |
# history is now available as a stream of events, rather than list of pairs of (Action, Observation) | |
# for compatibility with the existing output format, we can remake the pairs here | |
# remove when it becomes unnecessary | |
histories = compatibility_for_eval_history_pairs(state.history) | |
# Save the output | |
output = EvalOutput( | |
instance_id=qid, | |
test_result={ | |
'model_answer_raw': model_answer_raw, | |
'correct': correct, | |
}, | |
metadata=metadata, | |
history=histories, | |
metrics=metrics, | |
error=state.last_error if state and state.last_error else None, | |
) | |
return output | |
if __name__ == '__main__': | |
parser = get_parser() | |
parser.add_argument( | |
'--dataset', | |
type=str, | |
help='Which dataset to evaluate from ToolQA. ToolQA contains 8 datasets, namely agenda, airbnb, coffee, dblp, flight, gsm8k, scirex, yelp. For example, the default is --dataset flight.', | |
default='flight', | |
) | |
parser.add_argument( | |
'--hardness', | |
type=str, | |
help='Which level of difficulty to evaluate from ToolQA. ToolQA contains 2 levels of hardness, namely easy and hard. For example, the default is --hardness easy.', | |
default='easy', | |
) | |
parser.add_argument( | |
'--wolfram-alpha-appid', | |
type=str, | |
help='wolfram alpha appid to use for wolfram alpha related tests', | |
default='YOUR_WOLFRAMALPHA_APPID', | |
) | |
args, _ = parser.parse_known_args() | |
llm_config = None | |
if args.llm_config: | |
llm_config = get_llm_config_arg(args.llm_config) | |
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results | |
llm_config.modify_params = False | |
if llm_config is None: | |
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}') | |
dataset = '' | |
hardness = '' | |
dataset_choices = [ | |
'agenda', | |
'airbnb', | |
'coffee', | |
'dblp', | |
'flight', | |
'gsm8k', | |
'scirex', | |
'yelp', | |
'genda', | |
] | |
if args.dataset not in dataset_choices: | |
raise ValueError( | |
'Please choose from agenda, airbnb, coffee, dblp, flight, gsm8k, scirex, yelp for dataset.' | |
) | |
if args.hardness not in ['easy', 'hard']: | |
raise ValueError('Please choose from easy and hard for hardness.') | |
toolqa_test = pd.DataFrame(get_data(dataset, hardness)) | |
toolqa_test.rename(columns={'qid': 'instance_id'}, inplace=True) | |
metadata = make_metadata( | |
llm_config, | |
f'toolqa-{args.dataset}-{args.hardness}', | |
args.agent_cls, | |
args.eval_note, | |
args.eval_output_dir, | |
) | |
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') | |
instances = prepare_dataset(toolqa_test, output_file, args.eval_n_limit) | |
run_evaluation( | |
instances, metadata, output_file, args.eval_num_workers, process_instance | |
) | |