Spaces:
Build error
Build error
import asyncio | |
import os | |
import pandas as pd | |
from datasets import load_dataset | |
from evaluation.benchmarks.EDA.game import Q20Game, Q20GameCelebrity | |
from evaluation.utils.shared import ( | |
EvalMetadata, | |
EvalOutput, | |
compatibility_for_eval_history_pairs, | |
get_default_sandbox_config_for_eval, | |
make_metadata, | |
prepare_dataset, | |
reset_logger_for_multiprocessing, | |
run_evaluation, | |
) | |
from openhands.controller.state.state import State | |
from openhands.core.config import ( | |
OpenHandsConfig, | |
get_llm_config_arg, | |
get_parser, | |
) | |
from openhands.core.logger import openhands_logger as logger | |
from openhands.core.main import create_runtime, run_controller | |
from openhands.events.action import MessageAction | |
from openhands.utils.async_utils import call_async_from_sync | |
game = None | |
def codeact_user_response_eda(state: State) -> str: | |
global game | |
model_guess = '' | |
# retrieve the latest model message from history | |
if state.history: | |
last_agent_message = state.get_last_agent_message() | |
model_guess = last_agent_message.content if last_agent_message else '' | |
assert game is not None, 'Game is not initialized.' | |
msg = game.generate_user_response(model_guess) | |
game.curr_turn += 1 | |
logger.info(f'Model guess: {model_guess}') | |
logger.info(f'Answer response: {msg}') | |
if 'bingo!' in msg.lower(): | |
return '/exit' | |
return msg | |
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = { | |
'CodeActAgent': codeact_user_response_eda, | |
} | |
AGENT_CLS_TO_INST_SUFFIX = { | |
'CodeActAgent': 'When you think you have solved the question, please first send your answer to user through message and then exit.\n' | |
} | |
def get_config( | |
metadata: EvalMetadata, | |
) -> OpenHandsConfig: | |
sandbox_config = get_default_sandbox_config_for_eval() | |
sandbox_config.base_container_image = 'python:3.12-bookworm' | |
config = OpenHandsConfig( | |
default_agent=metadata.agent_class, | |
run_as_openhands=False, | |
runtime='docker', | |
max_iterations=metadata.max_iterations, | |
sandbox=sandbox_config, | |
# do not mount workspace | |
workspace_base=None, | |
workspace_mount_path=None, | |
) | |
config.set_llm_config(metadata.llm_config) | |
agent_config = config.get_agent_config(metadata.agent_class) | |
agent_config.enable_prompt_extensions = False | |
return config | |
def process_instance( | |
instance: pd.Series, | |
metadata: EvalMetadata, | |
reset_logger: bool = True, | |
) -> EvalOutput: | |
config = get_config(metadata) | |
instance_id = instance['text'].strip() | |
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation | |
if reset_logger: | |
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') | |
reset_logger_for_multiprocessing(logger, instance_id, log_dir) | |
else: | |
logger.info(f'Starting evaluation for instance {instance_id}.') | |
# Prepare instruction | |
_game_class = {'eda-things': Q20Game, 'eda-celebs': Q20GameCelebrity} | |
guesser_kargs = { | |
'max_new_tokens': 64, | |
'temperature': 0.8, | |
'repetition_penalty': 1.0, | |
'do_sample': True, | |
} # no penalty | |
# Use codeactagent as guesser_model | |
global game | |
assert metadata.dataset is not None | |
assert metadata.details is not None | |
game = _game_class[metadata.dataset]( | |
item=instance['text'].strip(), | |
answerer_model=metadata.details['answerer_model'], | |
guesser_model=None, | |
num_turns=metadata.max_iterations, | |
openai_api_key=metadata.details['openai_api_key'], | |
guesser_kargs=guesser_kargs, | |
) | |
instruction = f'{game.first_user_utterance}' | |
logger.info(f'Instruction: {instruction}') | |
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class] | |
# Here's how you can run the agent (similar to the `main` function) and get the final task state | |
runtime = create_runtime(config) | |
call_async_from_sync(runtime.connect) | |
state: State | None = asyncio.run( | |
run_controller( | |
config=config, | |
initial_user_action=MessageAction(content=instruction), | |
runtime=runtime, | |
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[ | |
metadata.agent_class | |
], | |
) | |
) | |
# ======= Attempt to evaluate the agent's edits ======= | |
# If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction) | |
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation. | |
if state is None: | |
raise ValueError('State should not be None.') | |
last_agent_message = state.get_last_agent_message() | |
final_message = last_agent_message.content if last_agent_message else '' | |
logger.info(f'Final message: {final_message} | Ground truth: {instance["text"]}') | |
test_result = game.reward() | |
metrics = state.metrics.get() if state.metrics else None | |
# history is now available as a stream of events, rather than list of pairs of (Action, Observation) | |
# for compatibility with the existing output format, we can remake the pairs here | |
# remove when it becomes unnecessary | |
histories = compatibility_for_eval_history_pairs(state.history) | |
# Save the output | |
output = EvalOutput( | |
instance_id=instance_id, | |
instance=instance.to_dict(), | |
instruction=instruction, | |
metadata=metadata, | |
history=histories, | |
metrics=metrics, | |
error=state.last_error if state and state.last_error else None, | |
test_result={ | |
'success': test_result, | |
'final_message': final_message, | |
'ground_truth': instance['text'], | |
}, | |
) | |
return output | |
if __name__ == '__main__': | |
parser = get_parser() | |
parser.add_argument( | |
'--answerer_model', '-a', default='gpt-3.5-turbo', help='answerer model' | |
) | |
parser.add_argument( | |
'--dataset', | |
default='things', | |
choices=['things', 'celebs'], | |
type=str, | |
help='dataset to be used', | |
) | |
parser.add_argument( | |
'--OPENAI_API_KEY', type=str, required=True, help='Your OpenAI API key' | |
) | |
parser.add_argument( | |
'--data-split', | |
default='test', | |
type=str, | |
help='data split, eg, test', | |
) | |
args, _ = parser.parse_known_args() | |
eda_dataset = load_dataset( | |
'yizheapple/entity-deduction-arena', name=args.dataset, split=args.data_split | |
) | |
eda_dataset.rename(columns={'text': 'instance_id'}, inplace=True) | |
llm_config = None | |
if args.llm_config: | |
llm_config = get_llm_config_arg(args.llm_config) | |
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results | |
llm_config.modify_params = False | |
if llm_config is None: | |
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}') | |
metadata = make_metadata( | |
llm_config, | |
f'eda-{args.dataset}', | |
args.agent_cls, | |
args.max_iterations, | |
args.eval_note, | |
args.eval_output_dir, | |
data_split=args.data_split, | |
details={ | |
'answerer_model': str(args.answerer_model), | |
'openai_api_key': str(args.OPENAI_API_KEY), | |
}, | |
) | |
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') | |
prepared_dataset = prepare_dataset( | |
eda_dataset.to_pandas(), output_file, args.eval_n_limit | |
) | |
run_evaluation( | |
prepared_dataset, | |
metadata, | |
output_file, | |
args.eval_num_workers, | |
process_instance, | |
) | |