Spaces:
Build error
Build error
import asyncio | |
import os | |
import re | |
import nltk | |
import pandas as pd | |
from datasets import load_dataset | |
from evaluation.utils.shared import ( | |
EvalMetadata, | |
EvalOutput, | |
compatibility_for_eval_history_pairs, | |
get_default_sandbox_config_for_eval, | |
make_metadata, | |
prepare_dataset, | |
reset_logger_for_multiprocessing, | |
run_evaluation, | |
) | |
from openhands.controller.state.state import State | |
from openhands.core.config import ( | |
OpenHandsConfig, | |
get_llm_config_arg, | |
parse_arguments, | |
) | |
from openhands.core.logger import openhands_logger as logger | |
from openhands.core.main import create_runtime, run_controller | |
from openhands.events.action import MessageAction | |
from openhands.utils.async_utils import call_async_from_sync | |
# Only CodeActAgent can delegate to BrowsingAgent | |
SUPPORTED_AGENT_CLS = {'CodeActAgent'} | |
def get_config( | |
metadata: EvalMetadata, | |
) -> OpenHandsConfig: | |
assert metadata.max_iterations == 1, ( | |
'max_iterations must be 1 for browsing delegation evaluation.' | |
) | |
sandbox_config = get_default_sandbox_config_for_eval() | |
sandbox_config.base_container_image = 'python:3.12-bookworm' | |
config = OpenHandsConfig( | |
default_agent=metadata.agent_class, | |
run_as_openhands=False, | |
runtime='docker', | |
max_iterations=metadata.max_iterations, | |
sandbox=sandbox_config, | |
workspace_base=None, | |
workspace_mount_path=None, | |
) | |
config.set_llm_config(metadata.llm_config) | |
agent_config = config.get_agent_config(metadata.agent_class) | |
agent_config.enable_prompt_extensions = False | |
return config | |
def process_instance( | |
instance: pd.Series, | |
metadata: EvalMetadata, | |
reset_logger: bool = True, | |
) -> EvalOutput: | |
config = get_config(metadata) | |
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation | |
if reset_logger: | |
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') | |
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir) | |
else: | |
logger.info(f'Starting evaluation for instance {instance.instance_id}.') | |
instruction = ( | |
f'You can delegate browsing tasks to a browser agent. ' | |
f"For example, for query 'Who is the president of the United States?', you can delegate the task to a browser agent via <execute_browse> Who is the president of the United States? </execute_browse>.\n" | |
f'Now, solve the following query: "{instance.instruction}"\n' | |
f'NOTE: You should copy the "query" as is into the <execute_browse> tag. DO NOT change ANYTHING in the query.' | |
) | |
runtime = create_runtime(config) | |
call_async_from_sync(runtime.connect) | |
state: State | None = asyncio.run( | |
run_controller( | |
config=config, | |
initial_user_action=MessageAction(content=instruction), | |
runtime=runtime, | |
) | |
) | |
if state is None: | |
raise ValueError('State should not be None.') | |
metrics = state.metrics.get() if state.metrics else None | |
# history is now available as a stream of events, rather than list of pairs of (Action, Observation) | |
# for compatibility with the existing output format, we can remake the pairs here | |
# remove when it becomes unnecessary | |
histories = compatibility_for_eval_history_pairs(state.history) | |
# find the last delegate action | |
last_delegate_action = None | |
result = {} | |
for action, _ in histories: | |
if action['action'] == 'delegate': | |
last_delegate_action = action | |
instruction_for_delegate = action['args']['inputs']['task'] | |
# parse `browse_actions` from `instruction_for_delegate` | |
# task = f'{thought}. I should start with: {browse_actions}' | |
instruction_for_delegate = re.search( | |
r'I should start with: (.*)', instruction_for_delegate | |
).group(1) | |
# calculate the edit distance between the instance.instruction and the instruction_for_delegate | |
edit_distance = nltk.edit_distance( | |
instance.instruction, instruction_for_delegate | |
) | |
is_exact_match = ( | |
instance.instruction.strip() == instruction_for_delegate.strip() | |
) | |
result['edit_distance'] = edit_distance | |
result['is_exact_match'] = is_exact_match | |
# Save the output | |
output = EvalOutput( | |
instance_id=instance.instance_id, | |
instruction=instruction, | |
metadata=metadata, | |
history=histories, | |
metrics=metrics, | |
error=state.last_error if state and state.last_error else None, | |
test_result={ | |
'query': instance.instruction, | |
'action': last_delegate_action, | |
'result': result, | |
}, | |
) | |
return output | |
if __name__ == '__main__': | |
args = parse_arguments() | |
dataset = load_dataset('OpenHands/eval-browsing-instructions') | |
dataset = dataset['train'].to_pandas() | |
assert dataset.columns.tolist() == ['instance_id', 'instruction'] | |
llm_config = None | |
if args.llm_config: | |
llm_config = get_llm_config_arg(args.llm_config) | |
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results | |
llm_config.modify_params = False | |
if llm_config is None: | |
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}') | |
metadata = make_metadata( | |
llm_config, | |
'browsing_delegation', | |
args.agent_cls, | |
args.max_iterations, | |
args.eval_note, | |
args.eval_output_dir, | |
) | |
if metadata.agent_class not in SUPPORTED_AGENT_CLS: | |
raise ValueError( | |
f'Agent class {metadata.agent_class} not supported with AgentDelegation.' | |
) | |
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') | |
instances = prepare_dataset(dataset, output_file, args.eval_n_limit) | |
run_evaluation( | |
instances, | |
metadata, | |
output_file, | |
args.eval_num_workers, | |
process_instance, | |
) | |