Spaces:
Build error
Build error
"""Implements evaluation of agents on HumanEvalFix from the HumanEvalPack benchmark introduced in | |
"OctoPack: Instruction Tuning Code Large Language Models" (https://arxiv.org/abs/2308.07124). | |
Please see https://github.com/bigcode-project/bigcode-evaluation-harness/blob/main/bigcode_eval/tasks/humanevalpack.py | |
for the reference implementation used in the paper. | |
TODOs: | |
- Potentially support other HumanEvalPack datasets (Explain & Synthesize) | |
- Support other languages (currently only Python) | |
""" | |
import asyncio | |
import os | |
import tempfile | |
from typing import Any | |
import pandas as pd | |
from datasets import load_dataset | |
from evaluate import load | |
from evaluation.utils.shared import ( | |
EvalMetadata, | |
EvalOutput, | |
codeact_user_response, | |
compatibility_for_eval_history_pairs, | |
get_default_sandbox_config_for_eval, | |
make_metadata, | |
prepare_dataset, | |
reset_logger_for_multiprocessing, | |
run_evaluation, | |
) | |
from openhands.controller.state.state import State | |
from openhands.core.config import ( | |
OpenHandsConfig, | |
get_llm_config_arg, | |
parse_arguments, | |
) | |
from openhands.core.logger import openhands_logger as logger | |
from openhands.core.main import create_runtime, run_controller | |
from openhands.events.action import CmdRunAction, MessageAction | |
from openhands.events.observation import CmdOutputObservation | |
from openhands.runtime.base import Runtime | |
from openhands.utils.async_utils import call_async_from_sync | |
IMPORT_HELPER = { | |
'python': [ | |
'import math', | |
'import re', | |
'import sys', | |
'import copy', | |
'import datetime', | |
'import itertools', | |
'import collections', | |
'import heapq', | |
'import statistics', | |
'import functools', | |
'import hashlib', | |
'import numpy', | |
'import numpy as np', | |
'import string', | |
'from typing import *', | |
'from collections import *', | |
], | |
} | |
LANGUAGE_TO_TIMEOUT = { | |
'python': 10, | |
} | |
LANGUAGE_TO_NUM_WORKERS = { | |
'python': 4, | |
} | |
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = { | |
'CodeActAgent': codeact_user_response, | |
} | |
AGENT_CLS_TO_INST_SUFFIX = { | |
'CodeActAgent': 'When you think you have fixed the issue through code changes, please finish the interaction using the "finish" tool.\n' | |
} | |
def get_config( | |
metadata: EvalMetadata, | |
) -> OpenHandsConfig: | |
sandbox_config = get_default_sandbox_config_for_eval() | |
sandbox_config.base_container_image = 'python:3.12-bookworm' | |
config = OpenHandsConfig( | |
default_agent=metadata.agent_class, | |
run_as_openhands=False, | |
runtime='docker', | |
max_iterations=metadata.max_iterations, | |
sandbox=sandbox_config, | |
# do not mount workspace | |
workspace_base=None, | |
workspace_mount_path=None, | |
) | |
config.set_llm_config(metadata.llm_config) | |
agent_config = config.get_agent_config(metadata.agent_class) | |
agent_config.enable_prompt_extensions = False | |
return config | |
def _get_instance_id(instance: pd.Series) -> str: | |
return instance.instance_id.replace('/', '__') | |
def initialize_runtime( | |
runtime: Runtime, | |
instance: pd.Series, # this argument is not required | |
): | |
"""Initialize the runtime for the agent. | |
This function is called before the runtime is used to run the agent. | |
""" | |
logger.info(f'{"-" * 50} BEGIN Runtime Initialization Fn {"-" * 50}') | |
obs: CmdOutputObservation | |
action = CmdRunAction(command='mkdir -p /workspace') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
action = CmdRunAction(command='cd /workspace') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
problem_statement = ( | |
instance.declaration + instance.buggy_solution + '\n' + instance.test | |
) | |
filename = f'{_get_instance_id(instance)}.py' | |
with tempfile.TemporaryDirectory() as tmpdir: | |
host_script_path = os.path.join(tmpdir, filename) | |
with open(host_script_path, 'w') as f: | |
f.write(problem_statement) | |
runtime.copy_to( | |
host_script_path, | |
'/workspace', | |
) | |
# check file exists | |
action = CmdRunAction(command=f'ls /workspace/{_get_instance_id(instance)}.py') | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
logger.info(f'{"-" * 50} END Runtime Initialization Fn {"-" * 50}') | |
def complete_runtime( | |
runtime: Runtime, | |
instance: pd.Series, # this argument is not required, but it is used to get the workspace_dir_name | |
) -> dict[str, Any]: | |
"""Complete the runtime for the agent. | |
This function is called before the runtime is used to run the agent. | |
If you need to do something in the sandbox to get the correctness metric after | |
the agent has run, modify this function. | |
""" | |
logger.info(f'{"-" * 50} BEGIN Runtime Completion Fn {"-" * 50}') | |
obs: CmdOutputObservation | |
# default value | |
language = 'python' | |
timeout = 10 | |
test_result = {'result': {}, 'metadata': {}} | |
code_metric = load('Muennighoff/code_eval_octopack') | |
timeout = LANGUAGE_TO_TIMEOUT[language] | |
num_workers = LANGUAGE_TO_NUM_WORKERS[language] | |
python_imports = '\n'.join(IMPORT_HELPER[language]) | |
action = CmdRunAction(command=f'cat /workspace/{_get_instance_id(instance)}.py') | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
function = obs.content.replace('\r\n', '\n') | |
logger.info(f'Function: {function}') | |
function = [[python_imports + '\n' + function]] | |
results, logs = code_metric.compute( | |
references=[instance.test], | |
predictions=function, | |
language=language, | |
timeout=timeout, | |
num_workers=num_workers, | |
) | |
test_result['result'] = results | |
test_result['metadata'] = { | |
'logs': logs, | |
'timeout': timeout, | |
'num_workers': num_workers, | |
} | |
logger.info(f'{"-" * 50} END Runtime Completion Fn {"-" * 50}') | |
return test_result | |
def process_instance( | |
instance: pd.Series, | |
metadata: EvalMetadata, | |
reset_logger: bool = True, | |
) -> EvalOutput: | |
config = get_config(metadata) | |
# use a session id for concurrent evaluation | |
sid = _get_instance_id(instance) | |
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation | |
if reset_logger: | |
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') | |
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir) | |
else: | |
logger.info(f'Starting evaluation for instance {instance.instance_id}.') | |
# Create file with HumanEvalFix problem | |
# Prompt reference: https://github.com/bigcode-project/bigcode-evaluation-harness/blob/84b96da31b7f840b55c5733325346176140cdb6b/bigcode_eval/tasks/humanevalpack.py#L509 | |
problem_statement = ( | |
instance.declaration + instance.buggy_solution + '\n' + instance.test | |
) | |
# Prepare instruction | |
instruction = ( | |
f'Please fix the function in {sid}.py such that all test cases pass.\n' | |
'Environment has been set up for you to start working. You may assume all necessary tools are installed.\n\n' | |
'# Problem Statement\n' | |
f'{problem_statement}\n\n' | |
) | |
instruction += ( | |
'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n' | |
'You should NOT modify any existing test case files. If needed, you can add new test cases in a NEW file to reproduce the issue.\n' | |
'You SHOULD INCLUDE PROPER INDENTATION in your edit commands.\n' | |
) | |
# NOTE: You can actually set slightly different instruction for different agents | |
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class] | |
# Here's how you can run the agent (similar to the `main` function) and get the final task state | |
runtime = create_runtime(config) | |
call_async_from_sync(runtime.connect) | |
initialize_runtime(runtime, instance) | |
state: State | None = asyncio.run( | |
run_controller( | |
config=config, | |
initial_user_action=MessageAction(content=instruction), | |
runtime=runtime, | |
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get( | |
metadata.agent_class | |
), | |
) | |
) | |
if state is None: | |
raise ValueError('State should not be None.') | |
metrics = state.metrics.get() if state.metrics else None | |
test_result = complete_runtime(runtime, instance) | |
# history is now available as a stream of events, rather than list of pairs of (Action, Observation) | |
# for compatibility with the existing output format, we can remake the pairs here | |
# remove when it becomes unnecessary | |
histories = compatibility_for_eval_history_pairs(state.history) | |
# Save the output | |
output = EvalOutput( | |
instance_id=instance.instance_id, | |
instruction=instruction, | |
metadata=metadata, | |
history=histories, | |
metrics=metrics, | |
error=state.last_error if state and state.last_error else None, | |
test_result=test_result, | |
) | |
return output | |
if __name__ == '__main__': | |
args = parse_arguments() | |
# NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing | |
# so we don't need to manage file uploading to OpenHands's repo | |
dataset = load_dataset( | |
'bigcode/humanevalpack', 'python' | |
) # TODO: Support other languages | |
hefix_tests = dataset['test'].to_pandas() | |
hefix_tests.rename(columns={'task_id': 'instance_id'}, inplace=True) | |
llm_config = None | |
if args.llm_config: | |
llm_config = get_llm_config_arg(args.llm_config) | |
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results | |
llm_config.modify_params = False | |
if llm_config is None: | |
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}') | |
metadata = make_metadata( | |
llm_config, | |
'humanevalfix-python', | |
args.agent_cls, | |
args.max_iterations, | |
args.eval_note, | |
args.eval_output_dir, | |
) | |
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') | |
instances = prepare_dataset(hefix_tests, output_file, args.eval_n_limit) | |
run_evaluation( | |
instances, | |
metadata, | |
output_file, | |
args.eval_num_workers, | |
process_instance, | |
) | |