Spaces:
Build error
Build error
"""Implements evaluation on JetBrains CI builds repair baselines | |
Please see https://github.com/JetBrains-Research/lca-baselines/tree/main/ci-builds-repair | |
and https://huggingface.co/datasets/JetBrains-Research/lca-ci-builds-repair | |
TODOs: | |
- Add more flags | |
""" | |
import json | |
import os | |
from pathlib import Path | |
import ruamel.yaml | |
from evaluation.utils.shared import ( | |
EvalMetadata, | |
get_default_sandbox_config_for_eval, | |
make_metadata, | |
) | |
from openhands.core.config import ( | |
LLMConfig, | |
OpenHandsConfig, | |
get_parser, | |
load_openhands_config, | |
) | |
from openhands.core.logger import openhands_logger as logger | |
from openhands.core.main import create_runtime | |
from openhands.events.action import CmdRunAction | |
from openhands.events.observation import CmdOutputObservation | |
from openhands.runtime.base import Runtime | |
from openhands.utils.async_utils import call_async_from_sync | |
def get_config( | |
metadata: EvalMetadata, | |
) -> OpenHandsConfig: | |
sandbox_config = get_default_sandbox_config_for_eval() | |
sandbox_config.base_container_image = 'python:3.12-bookworm' | |
config = OpenHandsConfig( | |
default_agent=metadata.agent_class, | |
run_as_openhands=False, | |
runtime='docker', | |
max_iterations=metadata.max_iterations, | |
sandbox=sandbox_config, | |
# do not mount workspace | |
workspace_base=None, | |
workspace_mount_path=None, | |
) | |
config.set_llm_config(metadata.llm_config) | |
agent_config = config.get_agent_config(metadata.agent_class) | |
agent_config.enable_prompt_extensions = False | |
return config | |
config = load_openhands_config() | |
def load_bench_config(): | |
script_dir = os.path.dirname( | |
os.path.abspath(__file__) | |
) # Get the absolute path of the script | |
config_path = os.path.join(script_dir, 'config.yaml') | |
yaml = ruamel.yaml.YAML(typ='rt') | |
with open(config_path, 'r') as file: | |
return yaml.load(file) | |
bench_config = load_bench_config() | |
def run_eval( | |
runtime: Runtime, | |
): | |
"""Run the evaluation and create report""" | |
logger.info(f'{"-" * 50} BEGIN Runtime Initialization Fn {"-" * 50}') | |
obs: CmdOutputObservation | |
lca_path = bench_config['LCA_PATH'] | |
lca_ci_path = os.path.join( | |
lca_path, 'lca-baselines', 'ci-builds-repair', 'ci-builds-repair-benchmark' | |
) | |
model_name = bench_config['model_name'] | |
action = CmdRunAction(command=f'mkdir {lca_path}') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
action = CmdRunAction(command=f'cd {lca_path}') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
lca_repo_url = 'https://github.com/juanmichelini/lca-baselines' | |
action = CmdRunAction(command=f'git clone {lca_repo_url}') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
action = CmdRunAction(command=f'cd {lca_ci_path}') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
action = CmdRunAction(command='git switch open-hands-integration') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
script_dir = os.path.dirname( | |
os.path.abspath(__file__) | |
) # Get the absolute path of the script | |
config_path = os.path.join(script_dir, 'config.yaml') | |
runtime.copy_to(config_path, lca_ci_path) | |
token_gh = bench_config['token_gh'] | |
commandf = f'export TOKEN_GH={token_gh}' | |
action = CmdRunAction(command=commandf) | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
action = CmdRunAction(command='poetry install') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
# Set up the task environment | |
commandf = f'poetry run python run_eval_jobs.py --model-name "{model_name}" --config-path "{lca_ci_path}/config.yaml" --job-ids-file "/tmp/output_lca.jsonl" --result-filename "testfile.jsonl" > /tmp/single_output.txt' | |
action = CmdRunAction(command=commandf) | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
logger.info(f'run_eval_jobs.py gave {obs.content} !') | |
# assert obs.exit_code == 0 | |
commandf = 'cat /tmp/single_output.txt' | |
action = CmdRunAction(command=commandf) | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
logger.info(f' {commandf} gave {obs.content}!') | |
testfile_path = os.path.join(bench_config['out_folder'], 'testfile.jsonl') | |
commandf = f'cat {testfile_path}' | |
action = CmdRunAction(command=commandf) | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
report_str = obs.content | |
logger.info(f'{"-" * 50} END Runtime Initialization Fn {"-" * 50}') | |
return report_str | |
def process_predictions(predictions_path: str): | |
output_path = Path(predictions_path) | |
if output_path.suffix != '.jsonl': | |
raise ValueError('output_path must end in .jsonl') | |
output_lca_path = output_path.with_name(output_path.stem + '_lca.jsonl') | |
with output_path.open() as infile, output_lca_path.open('w') as outfile: | |
for line in infile: | |
data = json.loads(line) | |
json.dump(data.get('test_result'), outfile) | |
outfile.write('\n') | |
return str(output_lca_path) | |
if __name__ == '__main__': | |
parser = get_parser() | |
parser.add_argument( | |
'-s', | |
'--eval-split', | |
type=str, | |
default='test', | |
choices=['test'], | |
help='data split to evaluate on, must be test', | |
) | |
parser.add_argument( | |
'--predictions-path', | |
type=str, | |
help='Path to the directory containing the output.jsonl with the predictions.', | |
) | |
args, _ = parser.parse_known_args() | |
data_split = args.eval_split | |
llm_config = LLMConfig(model='dummy_model') | |
metadata = make_metadata( | |
llm_config, | |
f'jetbrains-lca-ci--{data_split}', | |
args.agent_cls, | |
args.max_iterations, | |
args.eval_note, | |
args.predictions_path, | |
) | |
# prepare image | |
config = get_config(metadata) | |
runtime = create_runtime(config) | |
call_async_from_sync(runtime.connect) | |
logger.info('Converting output.jsonl into output_lca.jsonl') | |
predictions_lca_path = process_predictions( | |
os.path.join(args.predictions_path, 'output.jsonl') | |
) | |
runtime.copy_to(predictions_lca_path, '/tmp') | |
# get results | |
results_str = run_eval(runtime) | |
results_path = os.path.join(args.predictions_path, 'results.jsonl') | |
with open(results_path, 'w') as file: | |
file.write(results_str) | |
logger.info(f'Saved results to {results_path}') | |
# make a summary | |
resolved_instances = [] | |
unresolved_instances = [] | |
for line in results_str.strip().splitlines(): | |
data = json.loads(line) | |
conclusion = data.get('conclusion') | |
if conclusion == 'success': | |
resolved_instances.append(data) | |
elif conclusion == 'failure': | |
unresolved_instances.append(data) | |
completed_instances = resolved_instances + unresolved_instances | |
report = { | |
'success': len(resolved_instances), | |
'failure': len(unresolved_instances), | |
'resolved_instances': resolved_instances, | |
'unresolved_instances': unresolved_instances, | |
'completed_instances': completed_instances, | |
} | |
print(f'Results: {report}') | |
report_path = os.path.join(args.predictions_path, 'report.jsonl') | |
with open(report_path, 'w') as out_f: | |
out_f.write(json.dumps(report) + '\n') | |
logger.info(f'Saved report of results in swebench format to {report_path}') | |