Spaces:
Build error
Build error
import asyncio | |
import json | |
import os | |
from typing import Any | |
import browsergym.miniwob # noqa F401 register miniwob tasks as gym environments | |
import gymnasium as gym | |
import pandas as pd | |
from evaluation.utils.shared import ( | |
EvalMetadata, | |
EvalOutput, | |
codeact_user_response, | |
compatibility_for_eval_history_pairs, | |
get_default_sandbox_config_for_eval, | |
make_metadata, | |
prepare_dataset, | |
reset_logger_for_multiprocessing, | |
run_evaluation, | |
update_llm_config_for_completions_logging, | |
) | |
from openhands.controller.state.state import State | |
from openhands.core.config import ( | |
OpenHandsConfig, | |
get_llm_config_arg, | |
parse_arguments, | |
) | |
from openhands.core.logger import openhands_logger as logger | |
from openhands.core.main import create_runtime, run_controller | |
from openhands.events.action import ( | |
BrowseInteractiveAction, | |
CmdRunAction, | |
MessageAction, | |
) | |
from openhands.events.observation import ( | |
BrowserOutputObservation, | |
CmdOutputObservation, | |
) | |
from openhands.runtime.base import Runtime | |
from openhands.runtime.browser.browser_env import ( | |
BROWSER_EVAL_GET_GOAL_ACTION, | |
BROWSER_EVAL_GET_REWARDS_ACTION, | |
) | |
from openhands.utils.async_utils import call_async_from_sync | |
SUPPORTED_AGENT_CLS = {'BrowsingAgent', 'CodeActAgent'} | |
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = { | |
'CodeActAgent': codeact_user_response, | |
'BrowsingAgent': 'Continue the task. IMPORTANT: do not talk to the user until you have finished the task', | |
} | |
def get_config( | |
metadata: EvalMetadata, | |
env_id: str, | |
) -> OpenHandsConfig: | |
sandbox_config = get_default_sandbox_config_for_eval() | |
sandbox_config.base_container_image = 'xingyaoww/od-eval-miniwob:v1.0' | |
config = OpenHandsConfig( | |
default_agent=metadata.agent_class, | |
run_as_openhands=False, | |
runtime=os.environ.get('RUNTIME', 'docker'), | |
max_iterations=metadata.max_iterations, | |
sandbox=sandbox_config, | |
# do not mount workspace | |
workspace_base=None, | |
workspace_mount_path=None, | |
) | |
config.set_llm_config( | |
update_llm_config_for_completions_logging( | |
metadata.llm_config, metadata.eval_output_dir, env_id | |
) | |
) | |
return config | |
def initialize_runtime( | |
runtime: Runtime, | |
) -> tuple[str, BrowserOutputObservation]: | |
"""Initialize the runtime for the agent. | |
This function is called before the runtime is used to run the agent. | |
""" | |
logger.info(f'{"-" * 50} BEGIN Runtime Initialization Fn {"-" * 50}') | |
obs: CmdOutputObservation | |
# Set instance id | |
action = CmdRunAction(command='mkdir -p /workspace') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
action = BrowseInteractiveAction(browser_actions=BROWSER_EVAL_GET_GOAL_ACTION) | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
logger.info(obs, extra={'msg_type': 'OBSERVATION'}) | |
goal = obs.content | |
# Run noop to get the initial browser observation (e.g., the page URL & content) | |
action = BrowseInteractiveAction(browser_actions='noop(1000)') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
logger.info(obs, extra={'msg_type': 'OBSERVATION'}) | |
logger.info(f'{"-" * 50} END Runtime Initialization Fn {"-" * 50}') | |
return goal, obs | |
def complete_runtime( | |
runtime: Runtime, | |
) -> dict[str, Any]: | |
"""Complete the runtime for the agent. | |
This function is called before the runtime is used to run the agent. | |
If you need to do something in the sandbox to get the correctness metric after | |
the agent has run, modify this function. | |
""" | |
logger.info(f'{"-" * 50} BEGIN Runtime Completion Fn {"-" * 50}') | |
obs: CmdOutputObservation | |
action = BrowseInteractiveAction(browser_actions=BROWSER_EVAL_GET_REWARDS_ACTION) | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
logger.info(obs, extra={'msg_type': 'OBSERVATION'}) | |
logger.info(f'{"-" * 50} END Runtime Completion Fn {"-" * 50}') | |
return { | |
'rewards': json.loads(obs.content), | |
} | |
def process_instance( | |
instance: pd.Series, | |
metadata: EvalMetadata, | |
reset_logger: bool = True, | |
) -> EvalOutput: | |
env_id = instance.instance_id | |
config = get_config(metadata, env_id) | |
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation | |
if reset_logger: | |
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') | |
reset_logger_for_multiprocessing(logger, env_id, log_dir) | |
else: | |
logger.info(f'Starting evaluation for instance {env_id}.') | |
runtime = create_runtime(config) | |
call_async_from_sync(runtime.connect) | |
task_str, obs = initialize_runtime(runtime) | |
task_str += ( | |
f'\nInitial browser state (output of `noop(1000)`):\n{obs.get_agent_obs_text()}' | |
) | |
state: State | None = asyncio.run( | |
run_controller( | |
config=config, | |
initial_user_action=MessageAction( | |
content=task_str | |
), # take output from initialize_runtime | |
runtime=runtime, | |
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[ | |
metadata.agent_class | |
], | |
) | |
) | |
# ======= Attempt to evaluate the agent's environment impact ======= | |
# If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction) | |
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation. | |
if state is None: | |
raise ValueError('State should not be None.') | |
metrics = state.metrics.get() if state.metrics else None | |
# Instruction is the first message from the USER | |
instruction = '' | |
for event in state.history: | |
if isinstance(event, MessageAction): | |
instruction = event.content | |
break | |
return_val = complete_runtime(runtime) | |
logger.info(f'Return value from complete_runtime: {return_val}') | |
reward = max(return_val['rewards'], default=0) | |
# history is now available as a stream of events, rather than list of pairs of (Action, Observation) | |
# for compatibility with the existing output format, we can remake the pairs here | |
# remove when it becomes unnecessary | |
histories = compatibility_for_eval_history_pairs(state.history) | |
# Save the output | |
output = EvalOutput( | |
instance_id=env_id, | |
instruction=instruction, | |
metadata=metadata, | |
history=histories, | |
metrics=metrics, | |
error=state.last_error if state and state.last_error else None, | |
test_result={ | |
'reward': reward, | |
}, | |
) | |
return output | |
if __name__ == '__main__': | |
args = parse_arguments() | |
dataset = pd.DataFrame( | |
{ | |
'instance_id': [ | |
id | |
for id in gym.envs.registry.keys() | |
if id.startswith('browsergym/miniwob') | |
] | |
} | |
) | |
llm_config = None | |
if args.llm_config: | |
llm_config = get_llm_config_arg(args.llm_config) | |
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results | |
llm_config.modify_params = False | |
if llm_config is None: | |
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}') | |
metadata = make_metadata( | |
llm_config, | |
'miniwob', | |
args.agent_cls, | |
args.max_iterations, | |
args.eval_note, | |
args.eval_output_dir, | |
) | |
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') | |
instances = prepare_dataset(dataset, output_file, args.eval_n_limit) | |
run_evaluation( | |
instances, metadata, output_file, args.eval_num_workers, process_instance | |
) | |