OpenHands / evaluation /benchmarks /swe_bench /run_infer_interact.py
Backup-bdg's picture
Upload 964 files
51ff9e5 verified
raw
history blame
16 kB
import asyncio
import json
import os
import pandas as pd
from datasets import load_dataset
from litellm import completion as litellm_completion
import openhands.agenthub
from evaluation.benchmarks.swe_bench.run_infer import (
AgentFinishedCritic,
complete_runtime,
filter_dataset,
get_config,
initialize_runtime,
)
from evaluation.benchmarks.swe_bench.run_infer import (
get_instruction as base_get_instruction,
)
from evaluation.utils.shared import (
EvalException,
EvalMetadata,
EvalOutput,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
get_llm_config_arg,
get_parser,
)
from openhands.core.config.condenser_config import NoOpCondenserConfig
from openhands.core.config.utils import get_condenser_config_arg
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import MessageAction
from openhands.events.serialization.event import event_from_dict, event_to_dict
from openhands.utils.async_utils import call_async_from_sync
USE_HINT_TEXT = os.environ.get('USE_HINT_TEXT', 'false').lower() == 'true'
USE_INSTANCE_IMAGE = os.environ.get('USE_INSTANCE_IMAGE', 'false').lower() == 'true'
RUN_WITH_BROWSING = os.environ.get('RUN_WITH_BROWSING', 'false').lower() == 'false'
class FakeUser:
def __init__(self, issue, hints, files):
self.system_message = f"""
You are a GitHub user reporting an issue. Here are the details of your issue and environment:
Issue: {issue}
Hints: {hints}
Files relative to your current directory: {files}
Your task is to respond to questions from a coder who is trying to solve your issue. The coder has a summarized version of the issue you have. Follow these rules:
1. If the coder asks a question that is directly related to the information in the issue you have, provide that information.
2. Always stay in character as a user reporting an issue, not as an AI assistant.
3. Keep your responses concise and to the point.
4. The coder has limited turns to solve the issue. Do not interact with the coder beyond 3 turns.
Respond with "I don't have that information" if the question is unrelated or you're unsure.
"""
self.chat_history = [{'role': 'system', 'content': self.system_message}]
self.turns = 0
# Get LLM config from config.toml
self.llm_config = get_llm_config_arg(
'llm.fake_user'
) # You can change 'fake_user' to any config name you want
def generate_reply(self, question):
if self.turns > 3:
return 'Please continue working on the task. Do NOT ask for more help.'
self.chat_history.append({'role': 'user', 'content': question.content})
response = litellm_completion(
model=self.llm_config.model,
messages=self.chat_history,
api_key=self.llm_config.api_key.get_secret_value(),
temperature=self.llm_config.temperature,
base_url=self.llm_config.base_url,
)
reply = response.choices[0].message.content
self.chat_history.append({'role': 'assistant', 'content': reply})
self.turns += 1
return reply
# Global variable for fake user
fake_user = None
def get_fake_user_response(state: State) -> str:
global fake_user
if not fake_user:
return 'Please continue working on the task.'
last_agent_message = state.get_last_agent_message()
if last_agent_message:
return fake_user.generate_reply(last_agent_message)
return 'Please continue working on the task.'
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': get_fake_user_response,
}
def get_instruction(instance: pd.Series, metadata: EvalMetadata) -> MessageAction:
instance_copy = instance.copy()
instance_copy.problem_statement = f'{instance.problem_statement}\n\nHints:\nThe user has not provided all the necessary details about the issue, and there are some hidden details that are helpful. Please ask the user specific questions using non-code commands to gather the relevant information that the user has to help you solve the issue. Ensure you have all the details you require to solve the issue.'
return base_get_instruction(instance_copy, metadata)
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
) -> EvalOutput:
config = get_config(instance, metadata)
global fake_user
original_issue = instance.original_issue
issue = str(original_issue)
fake_user = FakeUser(issue=issue, hints=instance.hints_text, files=instance.files)
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance.instance_id}.')
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
try:
initialize_runtime(runtime, instance, metadata)
message_action = get_instruction(instance, metadata)
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=message_action,
runtime=runtime,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
metadata.agent_class
],
)
)
# if fatal error, throw EvalError to trigger re-run
if (
state
and state.last_error
and 'fatal error during agent execution' in state.last_error
and 'stuck in a loop' not in state.last_error
):
raise EvalException('Fatal error detected: ' + state.last_error)
# Get git patch
return_val = complete_runtime(runtime, instance)
git_patch = return_val['git_patch']
logger.info(
f'Got git diff for instance {instance.instance_id}:\n--------\n{git_patch}\n--------'
)
finally:
runtime.close()
# Prepare test result
test_result = {
'git_patch': git_patch,
}
if state is None:
raise ValueError('State should not be None.')
histories = [event_to_dict(event) for event in state.history]
metrics = state.metrics.get() if state.metrics else None
# Save the output
instruction = message_action.content
if message_action.image_urls:
instruction += (
'\n\n<image_urls>' + '\n'.join(message_action.image_urls) + '</image_urls>'
)
output = EvalOutput(
instance_id=instance.instance_id,
instruction=instruction,
instance=instance.to_dict(),
test_result=test_result,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
)
return output
if __name__ == '__main__':
parser = get_parser()
parser.add_argument(
'--dataset',
type=str,
default='cmu-lti/interactive-swe',
help='dataset to evaluate on',
)
parser.add_argument(
'--split',
type=str,
default='test',
help='split to evaluate on',
)
args, _ = parser.parse_known_args()
# Load dataset from huggingface datasets
dataset = load_dataset(args.dataset, split=args.split)
swe_bench_tests = filter_dataset(dataset.to_pandas(), 'instance_id')
logger.info(
f'Loaded dataset {args.dataset} with split {args.split}: {len(swe_bench_tests)} tasks'
)
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
llm_config.log_completions = True
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
llm_config.modify_params = False
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
# Get condenser config from environment variable
condenser_name = os.environ.get('EVAL_CONDENSER')
if condenser_name:
condenser_config = get_condenser_config_arg(condenser_name)
if condenser_config is None:
raise ValueError(
f'Could not find Condenser config: EVAL_CONDENSER={condenser_name}'
)
else:
# If no specific condenser config is provided via env var, default to NoOpCondenser
condenser_config = NoOpCondenserConfig()
logger.debug(
'No Condenser config provided via EVAL_CONDENSER, using NoOpCondenser.'
)
details = {'mode': 'interact'}
_agent_cls = openhands.agenthub.Agent.get_cls(args.agent_cls)
dataset_descrption = (
args.dataset.replace('/', '__') + '-' + args.split.replace('/', '__')
)
metadata = make_metadata(
llm_config,
dataset_descrption,
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
details=details,
condenser_config=condenser_config,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
print(f'### OUTPUT FILE: {output_file} ###')
# Run evaluation in iterative mode:
# If a rollout fails to output AgentFinishAction, we will try again until it succeeds OR total 3 attempts have been made.
ITERATIVE_EVAL_MODE = (
os.environ.get('ITERATIVE_EVAL_MODE', 'false').lower() == 'true'
)
ITERATIVE_EVAL_MODE_MAX_ATTEMPTS = int(
os.environ.get('ITERATIVE_EVAL_MODE_MAX_ATTEMPTS', '3')
)
if not ITERATIVE_EVAL_MODE:
# load the dataset
instances = prepare_dataset(swe_bench_tests, output_file, args.eval_n_limit)
if len(instances) > 0 and not isinstance(
instances['PASS_TO_PASS'][instances['PASS_TO_PASS'].index[0]], str
):
for col in ['PASS_TO_PASS', 'FAIL_TO_PASS']:
instances[col] = instances[col].apply(lambda x: str(x))
run_evaluation(
instances,
metadata,
output_file,
args.eval_num_workers,
process_instance,
timeout_seconds=8
* 60
* 60, # 8 hour PER instance should be more than enough
max_retries=5,
)
else:
critic = AgentFinishedCritic()
def get_cur_output_file_path(attempt: int) -> str:
return (
f'{output_file.removesuffix(".jsonl")}.critic_attempt_{attempt}.jsonl'
)
eval_ids = None
for attempt in range(1, ITERATIVE_EVAL_MODE_MAX_ATTEMPTS + 1):
cur_output_file = get_cur_output_file_path(attempt)
logger.info(
f'Running evaluation with critic {critic.__class__.__name__} for attempt {attempt} of {ITERATIVE_EVAL_MODE_MAX_ATTEMPTS}.'
)
# For deterministic eval, we set temperature to 0.1 for (>1) attempt
# so hopefully we get slightly different results
if attempt > 1 and metadata.llm_config.temperature == 0:
logger.info(
f'Detected temperature is 0 for (>1) attempt {attempt}. Setting temperature to 0.1...'
)
metadata.llm_config.temperature = 0.1
# Load instances - at first attempt, we evaluate all instances
# On subsequent attempts, we only evaluate the instances that failed the previous attempt determined by critic
instances = prepare_dataset(
swe_bench_tests, cur_output_file, args.eval_n_limit, eval_ids=eval_ids
)
if len(instances) > 0 and not isinstance(
instances['PASS_TO_PASS'][instances['PASS_TO_PASS'].index[0]], str
):
for col in ['PASS_TO_PASS', 'FAIL_TO_PASS']:
instances[col] = instances[col].apply(lambda x: str(x))
# Run evaluation - but save them to cur_output_file
logger.info(
f'Evaluating {len(instances)} instances for attempt {attempt}...'
)
run_evaluation(
instances,
metadata,
cur_output_file,
args.eval_num_workers,
process_instance,
timeout_seconds=8
* 60
* 60, # 8 hour PER instance should be more than enough
max_retries=5,
)
# When eval is done, we update eval_ids to the instances that failed the current attempt
instances_failed = []
logger.info(
f'Use critic {critic.__class__.__name__} to check {len(instances)} instances for attempt {attempt}...'
)
with open(cur_output_file, 'r') as f:
for line in f:
instance = json.loads(line)
try:
history = [
event_from_dict(event) for event in instance['history']
]
critic_result = critic.evaluate(
history, instance['test_result'].get('git_patch', '')
)
if not critic_result.success:
instances_failed.append(instance['instance_id'])
except Exception as e:
logger.error(
f'Error loading history for instance {instance["instance_id"]}: {e}'
)
instances_failed.append(instance['instance_id'])
logger.info(
f'{len(instances_failed)} instances failed the current attempt {attempt}: {instances_failed}'
)
eval_ids = instances_failed
# If no instances failed, we break
if len(instances_failed) == 0:
break
# Then we should aggregate the results from all attempts into the original output file
# and remove the intermediate files
logger.info(
'Aggregating results from all attempts into the original output file...'
)
fout = open(output_file, 'w')
added_instance_ids = set()
for attempt in reversed(range(1, ITERATIVE_EVAL_MODE_MAX_ATTEMPTS + 1)):
cur_output_file = get_cur_output_file_path(attempt)
if not os.path.exists(cur_output_file):
logger.warning(
f'Intermediate output file {cur_output_file} does not exist. Skipping...'
)
continue
with open(cur_output_file, 'r') as f:
for line in f:
instance = json.loads(line)
# Also make sure git_patch is not empty - otherwise we fall back to previous attempt (empty patch is worse than anything else)
if (
instance['instance_id'] not in added_instance_ids
and instance['test_result'].get('git_patch', '').strip()
):
fout.write(line)
added_instance_ids.add(instance['instance_id'])
logger.info(
f'Aggregated instances from {cur_output_file}. Total instances added so far: {len(added_instance_ids)}'
)
fout.close()
logger.info(
f'Done! Total {len(added_instance_ids)} instances added to {output_file}'
)