OpenHands / config.template.toml
Backup-bdg's picture
Upload 964 files
51ff9e5 verified
###################### OpenHands Configuration Example ######################
#
# All settings have default values, so you only need to uncomment and
# modify what you want to change
# The fields within each section are sorted in alphabetical order.
#
##############################################################################
#################################### Core ####################################
# General core configurations
##############################################################################
[core]
# API key for E2B
#e2b_api_key = ""
# API key for Modal
#modal_api_token_id = ""
#modal_api_token_secret = ""
# API key for Daytona
#daytona_api_key = ""
# Daytona Target
#daytona_target = ""
# Base path for the workspace
#workspace_base = "./workspace"
# Cache directory path
#cache_dir = "/tmp/cache"
# Reasoning effort for o1 models (low, medium, high, or not set)
#reasoning_effort = "medium"
# Debugging enabled
#debug = false
# Disable color in terminal output
#disable_color = false
# Path to store trajectories, can be a folder or a file
# If it's a folder, the session id will be used as the file name
#save_trajectory_path="./trajectories"
# Whether to save screenshots in the trajectory
# The screenshots are encoded and can make trajectory json files very large
#save_screenshots_in_trajectory = false
# Path to replay a trajectory, must be a file path
# If provided, trajectory will be loaded and replayed before the
# agent responds to any user instruction
#replay_trajectory_path = ""
# File store path
#file_store_path = "/tmp/file_store"
# File store type
#file_store = "memory"
# Maximum file size for uploads, in megabytes
#file_uploads_max_file_size_mb = 0
# Maximum budget per task, 0.0 means no limit
#max_budget_per_task = 0.0
# Maximum number of iterations
#max_iterations = 250
# Path to mount the workspace in the sandbox
#workspace_mount_path_in_sandbox = "/workspace"
# Path to mount the workspace
#workspace_mount_path = ""
# Path to rewrite the workspace mount path to
#workspace_mount_rewrite = ""
# Run as openhands
#run_as_openhands = true
# Runtime environment
#runtime = "docker"
# Name of the default agent
#default_agent = "CodeActAgent"
# JWT secret for authentication
#jwt_secret = ""
# Restrict file types for file uploads
#file_uploads_restrict_file_types = false
# List of allowed file extensions for uploads
#file_uploads_allowed_extensions = [".*"]
# Whether to enable the default LLM summarizing condenser when no condenser is specified in config
# When true, a LLMSummarizingCondenserConfig will be used as the default condenser
# When false, a NoOpCondenserConfig (no summarization) will be used
#enable_default_condenser = true
# Maximum number of concurrent conversations per user
#max_concurrent_conversations = 3
# Maximum age of conversations in seconds before they are automatically closed
#conversation_max_age_seconds = 864000 # 10 days
#################################### LLM #####################################
# Configuration for LLM models (group name starts with 'llm')
# use 'llm' for the default LLM config
##############################################################################
[llm]
# AWS access key ID
#aws_access_key_id = ""
# AWS region name
#aws_region_name = ""
# AWS secret access key
#aws_secret_access_key = ""
# API key to use (For Headless / CLI only - In Web this is overridden by Session Init)
api_key = ""
# API base URL (For Headless / CLI only - In Web this is overridden by Session Init)
#base_url = ""
# API version
#api_version = ""
# Cost per input token
#input_cost_per_token = 0.0
# Cost per output token
#output_cost_per_token = 0.0
# Custom LLM provider
#custom_llm_provider = ""
# Maximum number of characters in an observation's content
#max_message_chars = 10000
# Maximum number of input tokens
#max_input_tokens = 0
# Maximum number of output tokens
#max_output_tokens = 0
# Model to use. (For Headless / CLI only - In Web this is overridden by Session Init)
model = "gpt-4o"
# Number of retries to attempt when an operation fails with the LLM.
# Increase this value to allow more attempts before giving up
#num_retries = 8
# Maximum wait time (in seconds) between retry attempts
# This caps the exponential backoff to prevent excessively long
#retry_max_wait = 120
# Minimum wait time (in seconds) between retry attempts
# This sets the initial delay before the first retry
#retry_min_wait = 15
# Multiplier for exponential backoff calculation
# The wait time increases by this factor after each failed attempt
# A value of 2.0 means each retry waits twice as long as the previous one
#retry_multiplier = 2.0
# Drop any unmapped (unsupported) params without causing an exception
#drop_params = false
# Modify params for litellm to do transformations like adding a default message, when a message is empty.
# Note: this setting is global, unlike drop_params, it cannot be overridden in each call to litellm.
#modify_params = true
# Using the prompt caching feature if provided by the LLM and supported
#caching_prompt = true
# Base URL for the OLLAMA API
#ollama_base_url = ""
# Temperature for the API
#temperature = 0.0
# Timeout for the API
#timeout = 0
# Top p for the API
#top_p = 1.0
# If model is vision capable, this option allows to disable image processing (useful for cost reduction).
#disable_vision = true
# Custom tokenizer to use for token counting
# https://docs.litellm.ai/docs/completion/token_usage
#custom_tokenizer = ""
# Whether to use native tool calling if supported by the model. Can be true, false, or None by default, which chooses the model's default behavior based on the evaluation.
# ATTENTION: Based on evaluation, enabling native function calling may lead to worse results
# in some scenarios. Use with caution and consider testing with your specific use case.
# https://github.com/All-Hands-AI/OpenHands/pull/4711
#native_tool_calling = None
[llm.gpt4o-mini]
api_key = ""
model = "gpt-4o"
#################################### Agent ###################################
# Configuration for agents (group name starts with 'agent')
# Use 'agent' for the default agent config
# otherwise, group name must be `agent.<agent_name>` (case-sensitive), e.g.
# agent.CodeActAgent
##############################################################################
[agent]
# Whether the browsing tool is enabled
enable_browsing = true
# Whether the LLM draft editor is enabled
enable_llm_editor = false
# Whether the standard editor tool (str_replace_editor) is enabled
# Only has an effect if enable_llm_editor is False
enable_editor = true
# Whether the IPython tool is enabled
enable_jupyter = true
# Whether the command tool is enabled
enable_cmd = true
# Whether the think tool is enabled
enable_think = true
# Whether the finish tool is enabled
enable_finish = true
# LLM config group to use
#llm_config = 'your-llm-config-group'
# Whether to use prompt extension (e.g., microagent, repo/runtime info) at all
#enable_prompt_extensions = true
# List of microagents to disable
#disabled_microagents = []
# Whether history should be truncated to continue the session when hitting LLM context
# length limit
enable_history_truncation = true
[agent.RepoExplorerAgent]
# Example: use a cheaper model for RepoExplorerAgent to reduce cost, especially
# useful when an agent doesn't demand high quality but uses a lot of tokens
llm_config = 'gpt3'
[agent.CustomAgent]
# Example: use a custom agent from a different package
# This will be automatically be registered as a new agent named "CustomAgent"
classpath = "my_package.my_module.MyCustomAgent"
#################################### Sandbox ###################################
# Configuration for the sandbox
##############################################################################
[sandbox]
# Sandbox timeout in seconds
#timeout = 120
# Sandbox user ID
#user_id = 1000
# Container image to use for the sandbox
#base_container_image = "nikolaik/python-nodejs:python3.12-nodejs22"
# Use host network
#use_host_network = false
# Runtime extra build args
#runtime_extra_build_args = ["--network=host", "--add-host=host.docker.internal:host-gateway"]
# Enable auto linting after editing
#enable_auto_lint = false
# Whether to initialize plugins
#initialize_plugins = true
# Extra dependencies to install in the runtime image
#runtime_extra_deps = ""
# Environment variables to set at the launch of the runtime
#runtime_startup_env_vars = {}
# BrowserGym environment to use for evaluation
#browsergym_eval_env = ""
# Platform to use for building the runtime image (e.g., "linux/amd64")
#platform = ""
# Force rebuild of runtime image even if it exists
#force_rebuild_runtime = false
# Runtime container image to use (if not provided, will be built from base_container_image)
#runtime_container_image = ""
# Keep runtime alive after session ends
#keep_runtime_alive = false
# Pause closed runtimes instead of stopping them
#pause_closed_runtimes = false
# Delay in seconds before closing idle runtimes
#close_delay = 300
# Remove all containers when stopping the runtime
#rm_all_containers = false
# Enable GPU support in the runtime
#enable_gpu = false
# Additional Docker runtime kwargs
#docker_runtime_kwargs = {}
# Specific port to use for VSCode. If not set, a random port will be chosen.
# Useful when deploying OpenHands in a remote machine where you need to expose a specific port.
#vscode_port = 41234
# Volume mounts in the format 'host_path:container_path[:mode]'
# e.g. '/my/host/dir:/workspace:rw'
# Multiple mounts can be specified using commas
# e.g. '/path1:/workspace/path1,/path2:/workspace/path2:ro'
# Configure volumes under the [sandbox] section:
# [sandbox]
# volumes = "/my/host/dir:/workspace:rw,/path2:/workspace/path2:ro"
#################################### Security ###################################
# Configuration for security features
##############################################################################
[security]
# Enable confirmation mode (For Headless / CLI only - In Web this is overridden by Session Init)
#confirmation_mode = false
# The security analyzer to use (For Headless / CLI only - In Web this is overridden by Session Init)
#security_analyzer = ""
# Whether to enable security analyzer
#enable_security_analyzer = false
#################################### Condenser #################################
# Condensers control how conversation history is managed and compressed when
# the context grows too large. Each agent uses one condenser configuration.
##############################################################################
[condenser]
# The type of condenser to use. Available options:
# - "noop": No condensing, keeps full history (default)
# - "observation_masking": Keeps full event structure but masks older observations
# - "recent": Keeps only recent events and discards older ones
# - "llm": Uses an LLM to summarize conversation history
# - "amortized": Intelligently forgets older events while preserving important context
# - "llm_attention": Uses an LLM to prioritize most relevant context
type = "noop"
# Examples for each condenser type (uncomment and modify as needed):
# 1. NoOp Condenser - No additional settings needed
#type = "noop"
# 2. Observation Masking Condenser
#type = "observation_masking"
# Number of most-recent events where observations will not be masked
#attention_window = 100
# 3. Recent Events Condenser
#type = "recent"
# Number of initial events to always keep (typically includes task description)
#keep_first = 1
# Maximum number of events to keep in history
#max_events = 100
# 4. LLM Summarizing Condenser
#type = "llm"
# Reference to an LLM config to use for summarization
#llm_config = "condenser"
# Number of initial events to always keep (typically includes task description)
#keep_first = 1
# Maximum size of history before triggering summarization
#max_size = 100
# 5. Amortized Forgetting Condenser
#type = "amortized"
# Number of initial events to always keep (typically includes task description)
#keep_first = 1
# Maximum size of history before triggering forgetting
#max_size = 100
# 6. LLM Attention Condenser
#type = "llm_attention"
# Reference to an LLM config to use for attention scoring
#llm_config = "condenser"
# Number of initial events to always keep (typically includes task description)
#keep_first = 1
# Maximum size of history before triggering attention mechanism
#max_size = 100
# Example of a custom LLM configuration for condensers that require an LLM
# If not provided, it falls back to the default LLM
#[llm.condenser]
#model = "gpt-4o"
#temperature = 0.1
#max_input_tokens = 1024
#################################### Eval ####################################
# Configuration for the evaluation, please refer to the specific evaluation
# plugin for the available options
##############################################################################