Spaces:
Build error
Build error
import asyncio | |
import functools | |
import os | |
import re | |
import huggingface_hub | |
import pandas as pd | |
from datasets import load_dataset | |
from evaluation.benchmarks.gaia.scorer import question_scorer | |
from evaluation.utils.shared import ( | |
EvalMetadata, | |
EvalOutput, | |
codeact_user_response, | |
compatibility_for_eval_history_pairs, | |
get_default_sandbox_config_for_eval, | |
make_metadata, | |
prepare_dataset, | |
reset_logger_for_multiprocessing, | |
run_evaluation, | |
) | |
from openhands.controller.state.state import State | |
from openhands.core.config import ( | |
OpenHandsConfig, | |
get_llm_config_arg, | |
get_parser, | |
) | |
from openhands.core.config.utils import get_agent_config_arg | |
from openhands.core.logger import openhands_logger as logger | |
from openhands.core.main import create_runtime, run_controller | |
from openhands.events.action import AgentFinishAction, CmdRunAction, MessageAction | |
from openhands.events.observation import CmdOutputObservation | |
from openhands.runtime.base import Runtime | |
from openhands.utils.async_utils import call_async_from_sync | |
DATASET_CACHE_DIR = os.path.join(os.path.dirname(__file__), 'data') | |
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = { | |
'CodeActAgent': functools.partial(codeact_user_response, encapsulate_solution=True), | |
} | |
AGENT_CLS_TO_INST_SUFFIX = { | |
'CodeActAgent': 'When you think you have solved the question, please first send your answer to user through message and then exit.\n' | |
} | |
def get_config( | |
metadata: EvalMetadata, | |
) -> OpenHandsConfig: | |
sandbox_config = get_default_sandbox_config_for_eval() | |
sandbox_config.base_container_image = 'python:3.12-bookworm' | |
config = OpenHandsConfig( | |
default_agent=metadata.agent_class, | |
run_as_openhands=False, | |
runtime='docker', | |
max_iterations=metadata.max_iterations, | |
sandbox=sandbox_config, | |
# do not mount workspace | |
workspace_base=None, | |
workspace_mount_path=None, | |
) | |
config.set_llm_config(metadata.llm_config) | |
if metadata.agent_config: | |
config.set_agent_config(metadata.agent_config, metadata.agent_class) | |
else: | |
logger.info('Agent config not provided, using default settings') | |
agent_config = config.get_agent_config(metadata.agent_class) | |
agent_config.enable_prompt_extensions = False | |
return config | |
def initialize_runtime( | |
runtime: Runtime, | |
instance: pd.Series, # this argument is not required | |
): | |
"""Initialize the runtime for the agent. | |
This function is called before the runtime is used to run the agent. | |
""" | |
logger.info(f'{"-" * 50} BEGIN Runtime Initialization Fn {"-" * 50}') | |
obs: CmdOutputObservation | |
action = CmdRunAction(command='mkdir -p /workspace') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
if instance['file_name'] != '': | |
# if this question comes with a file, we need to save it to the workspace | |
assert metadata.data_split is not None | |
src_file = os.path.join( | |
DATASET_CACHE_DIR, '2023', metadata.data_split, instance['file_name'] | |
) | |
assert os.path.exists(src_file) | |
dest_file = os.path.join('/workspace', instance['file_name']) | |
runtime.copy_to(src_file, dest_file) | |
# rename to file.extension_name | |
extension_name = instance['file_name'].split('.')[-1] | |
action = CmdRunAction( | |
command=f'mv /workspace/{instance["file_name"]} /workspace/file.{extension_name}' | |
) | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
action = CmdRunAction(command='cd /workspace') | |
logger.info(action, extra={'msg_type': 'ACTION'}) | |
obs = runtime.run_action(action) | |
assert obs.exit_code == 0 | |
logger.info(f'{"-" * 50} END Runtime Initialization Fn {"-" * 50}') | |
def process_instance( | |
instance: pd.Series, | |
metadata: EvalMetadata, | |
reset_logger: bool = True, | |
) -> EvalOutput: | |
config = get_config(metadata) | |
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation | |
if reset_logger: | |
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') | |
reset_logger_for_multiprocessing(logger, instance['instance_id'], log_dir) | |
else: | |
logger.info(f'Starting evaluation for instance {instance["instance_id"]}.') | |
if instance['file_name'] != '': | |
extension_name = instance['file_name'].split('.')[-1] | |
dest_file = os.path.join('/workspace', f'file.{extension_name}') | |
else: | |
dest_file = None | |
# Prepare instruction | |
instruction = f'{instance["Question"]}\n' | |
logger.info(f'Instruction: {instruction}') | |
if dest_file: | |
instruction += f'\n\nThe mentioned file is provided in the workspace at: {dest_file.split("/")[-1]}' | |
instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n' | |
instruction += 'Please encapsulate your final answer (answer ONLY) within <solution> and </solution>.\n' | |
instruction += ( | |
'For example: The answer to the question is <solution> 42 </solution>.\n' | |
) | |
# NOTE: You can actually set slightly different instruction for different agents | |
instruction += AGENT_CLS_TO_INST_SUFFIX.get(metadata.agent_class, '') | |
logger.info(f'Instruction:\n{instruction}', extra={'msg_type': 'OBSERVATION'}) | |
runtime = create_runtime(config) | |
call_async_from_sync(runtime.connect) | |
initialize_runtime(runtime, instance) | |
# Here's how you can run the agent (similar to the `main` function) and get the final task state | |
state: State | None = asyncio.run( | |
run_controller( | |
config=config, | |
initial_user_action=MessageAction(content=instruction), | |
runtime=runtime, | |
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[ | |
metadata.agent_class | |
], | |
) | |
) | |
# ======= Attempt to evaluate the agent's edits ======= | |
# If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction) | |
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation. | |
if state is None: | |
raise ValueError('State should not be None.') | |
model_answer_raw = '' | |
# get the last message or thought from the agent | |
for event in reversed(state.history): | |
if event.source == 'agent': | |
if isinstance(event, AgentFinishAction): | |
model_answer_raw = event.thought | |
break | |
elif isinstance(event, CmdRunAction): | |
model_answer_raw = event.thought | |
break | |
elif isinstance(event, MessageAction): | |
model_answer_raw = event.content | |
break | |
# attempt to parse model_answer | |
model_answer = re.findall(r'<solution>(.*?)</solution>', model_answer_raw) | |
if len(model_answer) == 0: | |
logger.warning(f'Failed to parse model answer: {model_answer_raw}') | |
model_answer = model_answer_raw | |
else: | |
model_answer = model_answer[0] | |
logger.info( | |
f'Final message: {model_answer} | Ground truth: {instance["Final answer"]}' | |
) | |
score = question_scorer( | |
model_answer=model_answer, ground_truth=instance['Final answer'] | |
) | |
test_result = { | |
'score': score, | |
'model_answer_raw': model_answer_raw, | |
'model_answer': model_answer, | |
'ground_truth': instance['Final answer'], | |
} | |
metrics = state.metrics.get() if state.metrics else None | |
# history is now available as a stream of events, rather than list of pairs of (Action, Observation) | |
# for compatibility with the existing output format, we can remake the pairs here | |
# remove when it becomes unnecessary | |
histories = compatibility_for_eval_history_pairs(state.history) | |
# Save the output | |
output = EvalOutput( | |
instance_id=instance['instance_id'], | |
instance=instance.to_dict(), | |
instruction=instance['Question'], | |
metadata=metadata, | |
history=histories, | |
metrics=metrics, | |
error=state.last_error if state and state.last_error else None, | |
test_result=test_result, | |
) | |
return output | |
if __name__ == '__main__': | |
parser = get_parser() | |
parser.add_argument( | |
'--level', | |
type=str, | |
help='gaia level to evaluate, eg. 2023_level1', | |
) | |
parser.add_argument( | |
'--data-split', | |
type=str, | |
help='data split to evaluate, eg. test', | |
default='validation', | |
) | |
args, _ = parser.parse_known_args() | |
agent_config = None | |
if args.agent_config: | |
agent_config = get_agent_config_arg(args.agent_config) | |
llm_config = None | |
if args.llm_config: | |
llm_config = get_llm_config_arg(args.llm_config) | |
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results | |
llm_config.modify_params = False | |
if llm_config is None: | |
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}') | |
metadata = make_metadata( | |
llm_config=llm_config, | |
dataset_name='gaia', | |
agent_class=args.agent_cls, | |
max_iterations=args.max_iterations, | |
eval_note=args.eval_note, | |
eval_output_dir=args.eval_output_dir, | |
data_split=args.data_split, | |
details={'gaia-level': args.level}, | |
agent_config=agent_config, | |
) | |
dataset = load_dataset('gaia-benchmark/GAIA', args.level) | |
huggingface_hub.snapshot_download( | |
'gaia-benchmark/GAIA', | |
repo_type='dataset', | |
local_dir=DATASET_CACHE_DIR, | |
) | |
gaia_tests = dataset[metadata.data_split].to_pandas() | |
gaia_tests.rename(columns={'task_id': 'instance_id'}, inplace=True) | |
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') | |
prepared_dataset = prepare_dataset(gaia_tests, output_file, args.eval_n_limit) | |
run_evaluation( | |
dataset=prepared_dataset, | |
metadata=metadata, | |
output_file=output_file, | |
num_workers=args.eval_num_workers, | |
process_instance_func=process_instance, | |
) | |