Spaces:
Build error
Build error
import asyncio | |
import importlib.util | |
import os | |
import pandas as pd | |
from evaluation.integration_tests.tests.base import BaseIntegrationTest, TestResult | |
from evaluation.utils.shared import ( | |
EvalMetadata, | |
EvalOutput, | |
get_default_sandbox_config_for_eval, | |
make_metadata, | |
prepare_dataset, | |
reset_logger_for_multiprocessing, | |
run_evaluation, | |
update_llm_config_for_completions_logging, | |
) | |
from evaluation.utils.shared import ( | |
codeact_user_response as fake_user_response, | |
) | |
from openhands.controller.state.state import State | |
from openhands.core.config import ( | |
AgentConfig, | |
OpenHandsConfig, | |
get_llm_config_arg, | |
parse_arguments, | |
) | |
from openhands.core.logger import openhands_logger as logger | |
from openhands.core.main import create_runtime, run_controller | |
from openhands.events.action import MessageAction | |
from openhands.events.serialization.event import event_to_dict | |
from openhands.runtime.base import Runtime | |
from openhands.utils.async_utils import call_async_from_sync | |
FAKE_RESPONSES = { | |
'CodeActAgent': fake_user_response, | |
'VisualBrowsingAgent': fake_user_response, | |
} | |
def get_config( | |
metadata: EvalMetadata, | |
instance_id: str, | |
) -> OpenHandsConfig: | |
sandbox_config = get_default_sandbox_config_for_eval() | |
sandbox_config.platform = 'linux/amd64' | |
config = OpenHandsConfig( | |
default_agent=metadata.agent_class, | |
run_as_openhands=False, | |
runtime=os.environ.get('RUNTIME', 'docker'), | |
max_iterations=metadata.max_iterations, | |
sandbox=sandbox_config, | |
# do not mount workspace | |
workspace_base=None, | |
workspace_mount_path=None, | |
# debug | |
debug=True, | |
) | |
config.set_llm_config( | |
update_llm_config_for_completions_logging( | |
metadata.llm_config, metadata.eval_output_dir, instance_id | |
) | |
) | |
agent_config = AgentConfig( | |
enable_jupyter=True, | |
enable_browsing=True, | |
enable_llm_editor=False, | |
) | |
config.set_agent_config(agent_config) | |
return config | |
def process_instance( | |
instance: pd.Series, | |
metadata: EvalMetadata, | |
reset_logger: bool = True, | |
) -> EvalOutput: | |
config = get_config(metadata, instance.instance_id) | |
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation | |
if reset_logger: | |
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') | |
reset_logger_for_multiprocessing(logger, str(instance.instance_id), log_dir) | |
else: | |
logger.info( | |
f'\nStarting evaluation for instance {str(instance.instance_id)}.\n' | |
) | |
# ============================================= | |
# import test instance | |
# ============================================= | |
instance_id = instance.instance_id | |
spec = importlib.util.spec_from_file_location(instance_id, instance.file_path) | |
test_module = importlib.util.module_from_spec(spec) | |
spec.loader.exec_module(test_module) | |
assert hasattr(test_module, 'Test'), ( | |
f'Test module {instance_id} does not have a Test class' | |
) | |
test_class: type[BaseIntegrationTest] = test_module.Test | |
assert issubclass(test_class, BaseIntegrationTest), ( | |
f'Test class {instance_id} does not inherit from BaseIntegrationTest' | |
) | |
instruction = test_class.INSTRUCTION | |
# ============================================= | |
# create sandbox and run the agent | |
# ============================================= | |
runtime: Runtime = create_runtime(config) | |
call_async_from_sync(runtime.connect) | |
try: | |
test_class.initialize_runtime(runtime) | |
# Here's how you can run the agent (similar to the `main` function) and get the final task state | |
state: State | None = asyncio.run( | |
run_controller( | |
config=config, | |
initial_user_action=MessageAction(content=instruction), | |
runtime=runtime, | |
fake_user_response_fn=FAKE_RESPONSES[metadata.agent_class], | |
) | |
) | |
if state is None: | |
raise ValueError('State should not be None.') | |
# # ============================================= | |
# # result evaluation | |
# # ============================================= | |
histories = state.history | |
# some basic check | |
logger.info(f'Total events in history: {len(histories)}') | |
assert len(histories) > 0, 'History should not be empty' | |
test_result: TestResult = test_class.verify_result(runtime, histories) | |
metrics = state.metrics.get() if state.metrics else None | |
finally: | |
runtime.close() | |
# Save the output | |
output = EvalOutput( | |
instance_id=str(instance.instance_id), | |
instance=instance.to_dict(), | |
instruction=instruction, | |
metadata=metadata, | |
history=[event_to_dict(event) for event in histories], | |
metrics=metrics, | |
error=state.last_error if state and state.last_error else None, | |
test_result=test_result.model_dump(), | |
) | |
return output | |
def load_integration_tests() -> pd.DataFrame: | |
"""Load tests from python files under ./tests""" | |
cur_dir = os.path.dirname(os.path.abspath(__file__)) | |
test_dir = os.path.join(cur_dir, 'tests') | |
test_files = [ | |
os.path.join(test_dir, f) | |
for f in os.listdir(test_dir) | |
if f.startswith('t') and f.endswith('.py') | |
] | |
df = pd.DataFrame(test_files, columns=['file_path']) | |
df['instance_id'] = df['file_path'].apply( | |
lambda x: os.path.basename(x).rstrip('.py') | |
) | |
return df | |
if __name__ == '__main__': | |
args = parse_arguments() | |
integration_tests = load_integration_tests() | |
llm_config = None | |
if args.llm_config: | |
llm_config = get_llm_config_arg(args.llm_config) | |
if llm_config is None: | |
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}') | |
metadata = make_metadata( | |
llm_config, | |
'integration_tests', | |
args.agent_cls, | |
args.max_iterations, | |
args.eval_note, | |
args.eval_output_dir, | |
) | |
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') | |
# Parse dataset IDs if provided | |
eval_ids = None | |
if args.eval_ids: | |
eval_ids = str(args.eval_ids).split(',') | |
logger.info(f'\nUsing specific dataset IDs: {eval_ids}\n') | |
instances = prepare_dataset( | |
integration_tests, | |
output_file, | |
args.eval_n_limit, | |
eval_ids=eval_ids, | |
) | |
run_evaluation( | |
instances, | |
metadata, | |
output_file, | |
args.eval_num_workers, | |
process_instance, | |
) | |
df = pd.read_json(output_file, lines=True, orient='records') | |
# record success and reason | |
df['success'] = df['test_result'].apply(lambda x: x['success']) | |
df['reason'] = df['test_result'].apply(lambda x: x['reason']) | |
logger.info('-' * 100) | |
logger.info( | |
f'Success rate: {df["success"].mean():.2%} ({df["success"].sum()}/{len(df)})' | |
) | |
logger.info( | |
'\nEvaluation Results:' | |
+ '\n' | |
+ df[['instance_id', 'success', 'reason']].to_string(index=False) | |
) | |
logger.info('-' * 100) | |
# record cost for each instance, with 3 decimal places | |
# we sum up all the "costs" from the metrics array | |
df['cost'] = df['metrics'].apply( | |
lambda m: round(sum(c['cost'] for c in m['costs']), 3) | |
if m and 'costs' in m | |
else 0.0 | |
) | |
# capture the top-level error if present, per instance | |
df['error_message'] = df.get('error', None) | |
logger.info(f'Total cost: USD {df["cost"].sum():.2f}') | |
report_file = os.path.join(metadata.eval_output_dir, 'report.md') | |
with open(report_file, 'w') as f: | |
f.write( | |
f'Success rate: {df["success"].mean():.2%}' | |
f' ({df["success"].sum()}/{len(df)})\n' | |
) | |
f.write(f'\nTotal cost: USD {df["cost"].sum():.2f}\n') | |
f.write( | |
df[ | |
['instance_id', 'success', 'reason', 'cost', 'error_message'] | |
].to_markdown(index=False) | |
) | |