Spaces:
Build error
Build error
from __future__ import annotations | |
import asyncio | |
import copy | |
import os | |
import time | |
import traceback | |
from typing import Callable | |
import litellm # noqa | |
from litellm.exceptions import ( # noqa | |
APIConnectionError, | |
APIError, | |
AuthenticationError, | |
BadRequestError, | |
ContentPolicyViolationError, | |
ContextWindowExceededError, | |
InternalServerError, | |
NotFoundError, | |
OpenAIError, | |
RateLimitError, | |
ServiceUnavailableError, | |
Timeout, | |
) | |
from openhands.controller.agent import Agent | |
from openhands.controller.replay import ReplayManager | |
from openhands.controller.state.state import State, TrafficControlState | |
from openhands.controller.stuck import StuckDetector | |
from openhands.core.config import AgentConfig, LLMConfig | |
from openhands.core.exceptions import ( | |
AgentStuckInLoopError, | |
FunctionCallNotExistsError, | |
FunctionCallValidationError, | |
LLMContextWindowExceedError, | |
LLMMalformedActionError, | |
LLMNoActionError, | |
LLMResponseError, | |
) | |
from openhands.core.logger import LOG_ALL_EVENTS | |
from openhands.core.logger import openhands_logger as logger | |
from openhands.core.schema import AgentState | |
from openhands.events import ( | |
EventSource, | |
EventStream, | |
EventStreamSubscriber, | |
RecallType, | |
) | |
from openhands.events.action import ( | |
Action, | |
ActionConfirmationStatus, | |
AgentDelegateAction, | |
AgentFinishAction, | |
AgentRejectAction, | |
ChangeAgentStateAction, | |
CmdRunAction, | |
IPythonRunCellAction, | |
MessageAction, | |
NullAction, | |
SystemMessageAction, | |
) | |
from openhands.events.action.agent import CondensationAction, RecallAction | |
from openhands.events.event import Event | |
from openhands.events.event_filter import EventFilter | |
from openhands.events.observation import ( | |
AgentDelegateObservation, | |
AgentStateChangedObservation, | |
ErrorObservation, | |
NullObservation, | |
Observation, | |
) | |
from openhands.events.serialization.event import event_to_trajectory, truncate_content | |
from openhands.llm.llm import LLM | |
from openhands.llm.metrics import Metrics, TokenUsage | |
# note: RESUME is only available on web GUI | |
TRAFFIC_CONTROL_REMINDER = ( | |
"Please click on resume button if you'd like to continue, or start a new task." | |
) | |
ERROR_ACTION_NOT_EXECUTED_ID = 'AGENT_ERROR$ERROR_ACTION_NOT_EXECUTED' | |
ERROR_ACTION_NOT_EXECUTED = 'The action has not been executed. This may have occurred because the user pressed the stop button, or because the runtime system crashed and restarted due to resource constraints. Any previously established system state, dependencies, or environment variables may have been lost.' | |
class AgentController: | |
id: str | |
agent: Agent | |
max_iterations: int | |
event_stream: EventStream | |
state: State | |
confirmation_mode: bool | |
agent_to_llm_config: dict[str, LLMConfig] | |
agent_configs: dict[str, AgentConfig] | |
parent: 'AgentController | None' = None | |
delegate: 'AgentController | None' = None | |
_pending_action_info: tuple[Action, float] | None = None # (action, timestamp) | |
_closed: bool = False | |
_cached_first_user_message: MessageAction | None = None | |
def __init__( | |
self, | |
agent: Agent, | |
event_stream: EventStream, | |
max_iterations: int, | |
max_budget_per_task: float | None = None, | |
agent_to_llm_config: dict[str, LLMConfig] | None = None, | |
agent_configs: dict[str, AgentConfig] | None = None, | |
sid: str | None = None, | |
confirmation_mode: bool = False, | |
initial_state: State | None = None, | |
is_delegate: bool = False, | |
headless_mode: bool = True, | |
status_callback: Callable | None = None, | |
replay_events: list[Event] | None = None, | |
): | |
"""Initializes a new instance of the AgentController class. | |
Args: | |
agent: The agent instance to control. | |
event_stream: The event stream to publish events to. | |
max_iterations: The maximum number of iterations the agent can run. | |
max_budget_per_task: The maximum budget (in USD) allowed per task, beyond which the agent will stop. | |
agent_to_llm_config: A dictionary mapping agent names to LLM configurations in the case that | |
we delegate to a different agent. | |
agent_configs: A dictionary mapping agent names to agent configurations in the case that | |
we delegate to a different agent. | |
sid: The session ID of the agent. | |
confirmation_mode: Whether to enable confirmation mode for agent actions. | |
initial_state: The initial state of the controller. | |
is_delegate: Whether this controller is a delegate. | |
headless_mode: Whether the agent is run in headless mode. | |
status_callback: Optional callback function to handle status updates. | |
replay_events: A list of logs to replay. | |
""" | |
self.id = sid or event_stream.sid | |
self.agent = agent | |
self.headless_mode = headless_mode | |
self.is_delegate = is_delegate | |
# the event stream must be set before maybe subscribing to it | |
self.event_stream = event_stream | |
# subscribe to the event stream if this is not a delegate | |
if not self.is_delegate: | |
self.event_stream.subscribe( | |
EventStreamSubscriber.AGENT_CONTROLLER, self.on_event, self.id | |
) | |
# filter out events that are not relevant to the agent | |
# so they will not be included in the agent history | |
self.agent_history_filter = EventFilter( | |
exclude_types=( | |
NullAction, | |
NullObservation, | |
ChangeAgentStateAction, | |
AgentStateChangedObservation, | |
), | |
exclude_hidden=True, | |
) | |
# state from the previous session, state from a parent agent, or a fresh state | |
self.set_initial_state( | |
state=initial_state, | |
max_iterations=max_iterations, | |
confirmation_mode=confirmation_mode, | |
) | |
self.max_budget_per_task = max_budget_per_task | |
self.agent_to_llm_config = agent_to_llm_config if agent_to_llm_config else {} | |
self.agent_configs = agent_configs if agent_configs else {} | |
self._initial_max_iterations = max_iterations | |
self._initial_max_budget_per_task = max_budget_per_task | |
# stuck helper | |
self._stuck_detector = StuckDetector(self.state) | |
self.status_callback = status_callback | |
# replay-related | |
self._replay_manager = ReplayManager(replay_events) | |
# Add the system message to the event stream | |
self._add_system_message() | |
def _add_system_message(self): | |
for event in self.event_stream.get_events(start_id=self.state.start_id): | |
if isinstance(event, MessageAction) and event.source == EventSource.USER: | |
# FIXME: Remove this after 6/1/2025 | |
# Do not try to add a system message if we first run into | |
# a user message -- this means the eventstream exits before | |
# SystemMessageAction is introduced. | |
# We expect *agent* to handle this case gracefully. | |
return | |
if isinstance(event, SystemMessageAction): | |
# Do not try to add the system message if it already exists | |
return | |
# Add the system message to the event stream | |
# This should be done for all agents, including delegates | |
system_message = self.agent.get_system_message() | |
if system_message and system_message.content: | |
preview = ( | |
system_message.content[:50] + '...' | |
if len(system_message.content) > 50 | |
else system_message.content | |
) | |
logger.debug(f'System message: {preview}') | |
self.event_stream.add_event(system_message, EventSource.AGENT) | |
async def close(self, set_stop_state: bool = True) -> None: | |
"""Closes the agent controller, canceling any ongoing tasks and unsubscribing from the event stream. | |
Note that it's fairly important that this closes properly, otherwise the state is incomplete. | |
""" | |
if set_stop_state: | |
await self.set_agent_state_to(AgentState.STOPPED) | |
# we made history, now is the time to rewrite it! | |
# the final state.history will be used by external scripts like evals, tests, etc. | |
# history will need to be complete WITH delegates events | |
# like the regular agent history, it does not include: | |
# - 'hidden' events, events with hidden=True | |
# - backend events (the default 'filtered out' types, types in self.filter_out) | |
start_id = self.state.start_id if self.state.start_id >= 0 else 0 | |
end_id = ( | |
self.state.end_id | |
if self.state.end_id >= 0 | |
else self.event_stream.get_latest_event_id() | |
) | |
self.state.history = list( | |
self.event_stream.search_events( | |
start_id=start_id, | |
end_id=end_id, | |
reverse=False, | |
filter=self.agent_history_filter, | |
) | |
) | |
# unsubscribe from the event stream | |
# only the root parent controller subscribes to the event stream | |
if not self.is_delegate: | |
self.event_stream.unsubscribe( | |
EventStreamSubscriber.AGENT_CONTROLLER, self.id | |
) | |
self._closed = True | |
def log(self, level: str, message: str, extra: dict | None = None) -> None: | |
"""Logs a message to the agent controller's logger. | |
Args: | |
level (str): The logging level to use (e.g., 'info', 'debug', 'error'). | |
message (str): The message to log. | |
extra (dict | None, optional): Additional fields to log. Includes session_id by default. | |
""" | |
message = f'[Agent Controller {self.id}] {message}' | |
if extra is None: | |
extra = {} | |
extra_merged = {'session_id': self.id, **extra} | |
getattr(logger, level)(message, extra=extra_merged, stacklevel=2) | |
def update_state_before_step(self) -> None: | |
self.state.iteration += 1 | |
self.state.local_iteration += 1 | |
async def update_state_after_step(self) -> None: | |
# update metrics especially for cost. Use deepcopy to avoid it being modified by agent._reset() | |
self.state.local_metrics = copy.deepcopy(self.agent.llm.metrics) | |
async def _react_to_exception( | |
self, | |
e: Exception, | |
) -> None: | |
"""React to an exception by setting the agent state to error and sending a status message.""" | |
# Store the error reason before setting the agent state | |
self.state.last_error = f'{type(e).__name__}: {str(e)}' | |
if self.status_callback is not None: | |
err_id = '' | |
if isinstance(e, AuthenticationError): | |
err_id = 'STATUS$ERROR_LLM_AUTHENTICATION' | |
self.state.last_error = err_id | |
elif isinstance( | |
e, | |
( | |
ServiceUnavailableError, | |
APIConnectionError, | |
APIError, | |
), | |
): | |
err_id = 'STATUS$ERROR_LLM_SERVICE_UNAVAILABLE' | |
self.state.last_error = err_id | |
elif isinstance(e, InternalServerError): | |
err_id = 'STATUS$ERROR_LLM_INTERNAL_SERVER_ERROR' | |
self.state.last_error = err_id | |
elif isinstance(e, BadRequestError) and 'ExceededBudget' in str(e): | |
err_id = 'STATUS$ERROR_LLM_OUT_OF_CREDITS' | |
self.state.last_error = err_id | |
elif isinstance(e, ContentPolicyViolationError) or ( | |
isinstance(e, BadRequestError) | |
and 'ContentPolicyViolationError' in str(e) | |
): | |
err_id = 'STATUS$ERROR_LLM_CONTENT_POLICY_VIOLATION' | |
self.state.last_error = err_id | |
elif isinstance(e, RateLimitError): | |
await self.set_agent_state_to(AgentState.RATE_LIMITED) | |
return | |
self.status_callback('error', err_id, self.state.last_error) | |
# Set the agent state to ERROR after storing the reason | |
await self.set_agent_state_to(AgentState.ERROR) | |
def step(self) -> None: | |
asyncio.create_task(self._step_with_exception_handling()) | |
async def _step_with_exception_handling(self) -> None: | |
try: | |
await self._step() | |
except Exception as e: | |
self.log( | |
'error', | |
f'Error while running the agent (session ID: {self.id}): {e}. ' | |
f'Traceback: {traceback.format_exc()}', | |
) | |
reported = RuntimeError( | |
f'There was an unexpected error while running the agent: {e.__class__.__name__}. You can refresh the page or ask the agent to try again.' | |
) | |
if ( | |
isinstance(e, Timeout) | |
or isinstance(e, APIError) | |
or isinstance(e, BadRequestError) | |
or isinstance(e, NotFoundError) | |
or isinstance(e, InternalServerError) | |
or isinstance(e, AuthenticationError) | |
or isinstance(e, RateLimitError) | |
or isinstance(e, ContentPolicyViolationError) | |
or isinstance(e, LLMContextWindowExceedError) | |
): | |
reported = e | |
else: | |
self.log( | |
'warning', | |
f'Unknown exception type while running the agent: {type(e).__name__}.', | |
) | |
await self._react_to_exception(reported) | |
def should_step(self, event: Event) -> bool: | |
"""Whether the agent should take a step based on an event. | |
In general, the agent should take a step if it receives a message from the user, | |
or observes something in the environment (after acting). | |
""" | |
# it might be the delegate's day in the sun | |
if self.delegate is not None: | |
return False | |
if isinstance(event, Action): | |
if isinstance(event, MessageAction) and event.source == EventSource.USER: | |
return True | |
if ( | |
isinstance(event, MessageAction) | |
and self.get_agent_state() != AgentState.AWAITING_USER_INPUT | |
): | |
# TODO: this is fragile, but how else to check if eligible? | |
return True | |
if isinstance(event, AgentDelegateAction): | |
return True | |
if isinstance(event, CondensationAction): | |
return True | |
return False | |
if isinstance(event, Observation): | |
if ( | |
isinstance(event, NullObservation) | |
and event.cause is not None | |
and event.cause | |
> 0 # NullObservation has cause > 0 (RecallAction), not 0 (user message) | |
): | |
return True | |
if isinstance(event, AgentStateChangedObservation) or isinstance( | |
event, NullObservation | |
): | |
return False | |
return True | |
return False | |
def on_event(self, event: Event) -> None: | |
"""Callback from the event stream. Notifies the controller of incoming events. | |
Args: | |
event (Event): The incoming event to process. | |
""" | |
# If we have a delegate that is not finished or errored, forward events to it | |
if self.delegate is not None: | |
delegate_state = self.delegate.get_agent_state() | |
if delegate_state not in ( | |
AgentState.FINISHED, | |
AgentState.ERROR, | |
AgentState.REJECTED, | |
): | |
# Forward the event to delegate and skip parent processing | |
asyncio.get_event_loop().run_until_complete( | |
self.delegate._on_event(event) | |
) | |
return | |
else: | |
# delegate is done or errored, so end it | |
self.end_delegate() | |
return | |
# continue parent processing only if there's no active delegate | |
asyncio.get_event_loop().run_until_complete(self._on_event(event)) | |
async def _on_event(self, event: Event) -> None: | |
if hasattr(event, 'hidden') and event.hidden: | |
return | |
# if the event is not filtered out, add it to the history | |
if self.agent_history_filter.include(event): | |
self.state.history.append(event) | |
if isinstance(event, Action): | |
await self._handle_action(event) | |
elif isinstance(event, Observation): | |
await self._handle_observation(event) | |
should_step = self.should_step(event) | |
if should_step: | |
self.log( | |
'debug', | |
f'Stepping agent after event: {type(event).__name__}', | |
extra={'msg_type': 'STEPPING_AGENT'}, | |
) | |
await self._step_with_exception_handling() | |
elif isinstance(event, MessageAction) and event.source == EventSource.USER: | |
# If we received a user message but aren't stepping, log why | |
self.log( | |
'warning', | |
f'Not stepping agent after user message. Current state: {self.get_agent_state()}', | |
extra={'msg_type': 'NOT_STEPPING_AFTER_USER_MESSAGE'}, | |
) | |
async def _handle_action(self, action: Action) -> None: | |
"""Handles an Action from the agent or delegate.""" | |
if isinstance(action, ChangeAgentStateAction): | |
await self.set_agent_state_to(action.agent_state) # type: ignore | |
elif isinstance(action, MessageAction): | |
await self._handle_message_action(action) | |
elif isinstance(action, AgentDelegateAction): | |
await self.start_delegate(action) | |
assert self.delegate is not None | |
# Post a MessageAction with the task for the delegate | |
if 'task' in action.inputs: | |
self.event_stream.add_event( | |
MessageAction(content='TASK: ' + action.inputs['task']), | |
EventSource.USER, | |
) | |
await self.delegate.set_agent_state_to(AgentState.RUNNING) | |
return | |
elif isinstance(action, AgentFinishAction): | |
self.state.outputs = action.outputs | |
self.state.metrics.merge(self.state.local_metrics) | |
await self.set_agent_state_to(AgentState.FINISHED) | |
elif isinstance(action, AgentRejectAction): | |
self.state.outputs = action.outputs | |
self.state.metrics.merge(self.state.local_metrics) | |
await self.set_agent_state_to(AgentState.REJECTED) | |
async def _handle_observation(self, observation: Observation) -> None: | |
"""Handles observation from the event stream. | |
Args: | |
observation (observation): The observation to handle. | |
""" | |
observation_to_print = copy.deepcopy(observation) | |
if len(observation_to_print.content) > self.agent.llm.config.max_message_chars: | |
observation_to_print.content = truncate_content( | |
observation_to_print.content, self.agent.llm.config.max_message_chars | |
) | |
# Use info level if LOG_ALL_EVENTS is set | |
log_level = 'info' if os.getenv('LOG_ALL_EVENTS') in ('true', '1') else 'debug' | |
self.log( | |
log_level, str(observation_to_print), extra={'msg_type': 'OBSERVATION'} | |
) | |
if observation.llm_metrics is not None: | |
self.agent.llm.metrics.merge(observation.llm_metrics) | |
# this happens for runnable actions and microagent actions | |
if self._pending_action and self._pending_action.id == observation.cause: | |
if self.state.agent_state == AgentState.AWAITING_USER_CONFIRMATION: | |
return | |
self._pending_action = None | |
if self.state.agent_state == AgentState.USER_CONFIRMED: | |
await self.set_agent_state_to(AgentState.RUNNING) | |
if self.state.agent_state == AgentState.USER_REJECTED: | |
await self.set_agent_state_to(AgentState.AWAITING_USER_INPUT) | |
return | |
elif isinstance(observation, ErrorObservation): | |
if self.state.agent_state == AgentState.ERROR: | |
self.state.metrics.merge(self.state.local_metrics) | |
async def _handle_message_action(self, action: MessageAction) -> None: | |
"""Handles message actions from the event stream. | |
Args: | |
action (MessageAction): The message action to handle. | |
""" | |
if action.source == EventSource.USER: | |
# Use info level if LOG_ALL_EVENTS is set | |
log_level = ( | |
'info' if os.getenv('LOG_ALL_EVENTS') in ('true', '1') else 'debug' | |
) | |
self.log( | |
log_level, | |
str(action), | |
extra={'msg_type': 'ACTION', 'event_source': EventSource.USER}, | |
) | |
# Extend max iterations when the user sends a message (only in non-headless mode) | |
if self._initial_max_iterations is not None and not self.headless_mode: | |
self.state.max_iterations = ( | |
self.state.iteration + self._initial_max_iterations | |
) | |
if ( | |
self.state.traffic_control_state == TrafficControlState.THROTTLING | |
or self.state.traffic_control_state == TrafficControlState.PAUSED | |
): | |
self.state.traffic_control_state = TrafficControlState.NORMAL | |
self.log( | |
'debug', | |
f'Extended max iterations to {self.state.max_iterations} after user message', | |
) | |
# try to retrieve microagents relevant to the user message | |
# set pending_action while we search for information | |
# if this is the first user message for this agent, matters for the microagent info type | |
first_user_message = self._first_user_message() | |
is_first_user_message = ( | |
action.id == first_user_message.id if first_user_message else False | |
) | |
recall_type = ( | |
RecallType.WORKSPACE_CONTEXT | |
if is_first_user_message | |
else RecallType.KNOWLEDGE | |
) | |
recall_action = RecallAction(query=action.content, recall_type=recall_type) | |
self._pending_action = recall_action | |
# this is source=USER because the user message is the trigger for the microagent retrieval | |
self.event_stream.add_event(recall_action, EventSource.USER) | |
if self.get_agent_state() != AgentState.RUNNING: | |
await self.set_agent_state_to(AgentState.RUNNING) | |
elif action.source == EventSource.AGENT: | |
# If the agent is waiting for a response, set the appropriate state | |
if action.wait_for_response: | |
await self.set_agent_state_to(AgentState.AWAITING_USER_INPUT) | |
def _reset(self) -> None: | |
"""Resets the agent controller.""" | |
# Runnable actions need an Observation | |
# make sure there is an Observation with the tool call metadata to be recognized by the agent | |
# otherwise the pending action is found in history, but it's incomplete without an obs with tool result | |
if self._pending_action and hasattr(self._pending_action, 'tool_call_metadata'): | |
# find out if there already is an observation with the same tool call metadata | |
found_observation = False | |
for event in self.state.history: | |
if ( | |
isinstance(event, Observation) | |
and event.tool_call_metadata | |
== self._pending_action.tool_call_metadata | |
): | |
found_observation = True | |
break | |
# make a new ErrorObservation with the tool call metadata | |
if not found_observation: | |
obs = ErrorObservation( | |
content=ERROR_ACTION_NOT_EXECUTED, | |
error_id=ERROR_ACTION_NOT_EXECUTED_ID, | |
) | |
obs.tool_call_metadata = self._pending_action.tool_call_metadata | |
obs._cause = self._pending_action.id # type: ignore[attr-defined] | |
self.event_stream.add_event(obs, EventSource.AGENT) | |
# NOTE: RecallActions don't need an ErrorObservation upon reset, as long as they have no tool calls | |
# reset the pending action, this will be called when the agent is STOPPED or ERROR | |
self._pending_action = None | |
self.agent.reset() | |
async def set_agent_state_to(self, new_state: AgentState) -> None: | |
"""Updates the agent's state and handles side effects. Can emit events to the event stream. | |
Args: | |
new_state (AgentState): The new state to set for the agent. | |
""" | |
self.log( | |
'info', | |
f'Setting agent({self.agent.name}) state from {self.state.agent_state} to {new_state}', | |
) | |
if new_state == self.state.agent_state: | |
return | |
if new_state in (AgentState.STOPPED, AgentState.ERROR): | |
# sync existing metrics BEFORE resetting the agent | |
await self.update_state_after_step() | |
self.state.metrics.merge(self.state.local_metrics) | |
self._reset() | |
elif ( | |
new_state == AgentState.RUNNING | |
and self.state.agent_state == AgentState.PAUSED | |
# TODO: do we really need both THROTTLING and PAUSED states, or can we clean up one of them completely? | |
and self.state.traffic_control_state == TrafficControlState.THROTTLING | |
): | |
# user intends to interrupt traffic control and let the task resume temporarily | |
self.state.traffic_control_state = TrafficControlState.PAUSED | |
# User has chosen to deliberately continue - lets double the max iterations | |
if ( | |
self.state.iteration is not None | |
and self.state.max_iterations is not None | |
and self._initial_max_iterations is not None | |
and not self.headless_mode | |
): | |
if self.state.iteration >= self.state.max_iterations: | |
self.state.max_iterations += self._initial_max_iterations | |
if ( | |
self.state.metrics.accumulated_cost is not None | |
and self.max_budget_per_task is not None | |
and self._initial_max_budget_per_task is not None | |
): | |
if self.state.metrics.accumulated_cost >= self.max_budget_per_task: | |
self.max_budget_per_task += self._initial_max_budget_per_task | |
elif self._pending_action is not None and ( | |
new_state in (AgentState.USER_CONFIRMED, AgentState.USER_REJECTED) | |
): | |
if hasattr(self._pending_action, 'thought'): | |
self._pending_action.thought = '' # type: ignore[union-attr] | |
if new_state == AgentState.USER_CONFIRMED: | |
confirmation_state = ActionConfirmationStatus.CONFIRMED | |
else: | |
confirmation_state = ActionConfirmationStatus.REJECTED | |
self._pending_action.confirmation_state = confirmation_state # type: ignore[attr-defined] | |
self._pending_action._id = None # type: ignore[attr-defined] | |
self.event_stream.add_event(self._pending_action, EventSource.AGENT) | |
self.state.agent_state = new_state | |
# Create observation with reason field if it's an error state | |
reason = '' | |
if new_state == AgentState.ERROR: | |
reason = self.state.last_error | |
self.event_stream.add_event( | |
AgentStateChangedObservation('', self.state.agent_state, reason), | |
EventSource.ENVIRONMENT, | |
) | |
def get_agent_state(self) -> AgentState: | |
"""Returns the current state of the agent. | |
Returns: | |
AgentState: The current state of the agent. | |
""" | |
return self.state.agent_state | |
async def start_delegate(self, action: AgentDelegateAction) -> None: | |
"""Start a delegate agent to handle a subtask. | |
OpenHands is a multi-agentic system. A `task` is a conversation between | |
OpenHands (the whole system) and the user, which might involve one or more inputs | |
from the user. It starts with an initial input (typically a task statement) from | |
the user, and ends with either an `AgentFinishAction` initiated by the agent, a | |
stop initiated by the user, or an error. | |
A `subtask` is a conversation between an agent and the user, or another agent. If a `task` | |
is conducted by a single agent, then it's also a `subtask`. Otherwise, a `task` consists of | |
multiple `subtasks`, each executed by one agent. | |
Args: | |
action (AgentDelegateAction): The action containing information about the delegate agent to start. | |
""" | |
agent_cls: type[Agent] = Agent.get_cls(action.agent) | |
agent_config = self.agent_configs.get(action.agent, self.agent.config) | |
llm_config = self.agent_to_llm_config.get(action.agent, self.agent.llm.config) | |
llm = LLM(config=llm_config, retry_listener=self._notify_on_llm_retry) | |
delegate_agent = agent_cls(llm=llm, config=agent_config) | |
state = State( | |
session_id=self.id.removesuffix('-delegate'), | |
inputs=action.inputs or {}, | |
local_iteration=0, | |
iteration=self.state.iteration, | |
max_iterations=self.state.max_iterations, | |
delegate_level=self.state.delegate_level + 1, | |
# global metrics should be shared between parent and child | |
metrics=self.state.metrics, | |
# start on top of the stream | |
start_id=self.event_stream.get_latest_event_id() + 1, | |
) | |
self.log( | |
'debug', | |
f'start delegate, creating agent {delegate_agent.name} using LLM {llm}', | |
) | |
# Create the delegate with is_delegate=True so it does NOT subscribe directly | |
self.delegate = AgentController( | |
sid=self.id + '-delegate', | |
agent=delegate_agent, | |
event_stream=self.event_stream, | |
max_iterations=self.state.max_iterations, | |
max_budget_per_task=self.max_budget_per_task, | |
agent_to_llm_config=self.agent_to_llm_config, | |
agent_configs=self.agent_configs, | |
initial_state=state, | |
is_delegate=True, | |
headless_mode=self.headless_mode, | |
) | |
def end_delegate(self) -> None: | |
"""Ends the currently active delegate (e.g., if it is finished or errored). | |
so that this controller can resume normal operation. | |
""" | |
if self.delegate is None: | |
return | |
delegate_state = self.delegate.get_agent_state() | |
# update iteration that is shared across agents | |
self.state.iteration = self.delegate.state.iteration | |
# close the delegate controller before adding new events | |
asyncio.get_event_loop().run_until_complete(self.delegate.close()) | |
if delegate_state in (AgentState.FINISHED, AgentState.REJECTED): | |
# retrieve delegate result | |
delegate_outputs = ( | |
self.delegate.state.outputs if self.delegate.state else {} | |
) | |
# prepare delegate result observation | |
# TODO: replace this with AI-generated summary (#2395) | |
formatted_output = ', '.join( | |
f'{key}: {value}' for key, value in delegate_outputs.items() | |
) | |
content = ( | |
f'{self.delegate.agent.name} finishes task with {formatted_output}' | |
) | |
else: | |
# delegate state is ERROR | |
# emit AgentDelegateObservation with error content | |
delegate_outputs = ( | |
self.delegate.state.outputs if self.delegate.state else {} | |
) | |
content = ( | |
f'{self.delegate.agent.name} encountered an error during execution.' | |
) | |
content = f'Delegated agent finished with result:\n\n{content}' | |
# emit the delegate result observation | |
obs = AgentDelegateObservation(outputs=delegate_outputs, content=content) | |
# associate the delegate action with the initiating tool call | |
for event in reversed(self.state.history): | |
if isinstance(event, AgentDelegateAction): | |
delegate_action = event | |
obs.tool_call_metadata = delegate_action.tool_call_metadata | |
break | |
self.event_stream.add_event(obs, EventSource.AGENT) | |
# unset delegate so parent can resume normal handling | |
self.delegate = None | |
async def _step(self) -> None: | |
"""Executes a single step of the parent or delegate agent. Detects stuck agents and limits on the number of iterations and the task budget.""" | |
if self.get_agent_state() != AgentState.RUNNING: | |
self.log( | |
'debug', | |
f'Agent not stepping because state is {self.get_agent_state()} (not RUNNING)', | |
extra={'msg_type': 'STEP_BLOCKED_STATE'}, | |
) | |
return | |
if self._pending_action: | |
action_id = getattr(self._pending_action, 'id', 'unknown') | |
action_type = type(self._pending_action).__name__ | |
self.log( | |
'debug', | |
f'Agent not stepping because of pending action: {action_type} (id={action_id})', | |
extra={'msg_type': 'STEP_BLOCKED_PENDING_ACTION'}, | |
) | |
return | |
self.log( | |
'debug', | |
f'LEVEL {self.state.delegate_level} LOCAL STEP {self.state.local_iteration} GLOBAL STEP {self.state.iteration}', | |
extra={'msg_type': 'STEP'}, | |
) | |
stop_step = False | |
if self.state.iteration >= self.state.max_iterations: | |
stop_step = await self._handle_traffic_control( | |
'iteration', self.state.iteration, self.state.max_iterations | |
) | |
if self.max_budget_per_task is not None: | |
current_cost = self.state.metrics.accumulated_cost | |
if current_cost > self.max_budget_per_task: | |
stop_step = await self._handle_traffic_control( | |
'budget', current_cost, self.max_budget_per_task | |
) | |
if stop_step: | |
logger.warning('Stopping agent due to traffic control') | |
return | |
if self._is_stuck(): | |
await self._react_to_exception( | |
AgentStuckInLoopError('Agent got stuck in a loop') | |
) | |
return | |
self.update_state_before_step() | |
action: Action = NullAction() | |
if self._replay_manager.should_replay(): | |
# in replay mode, we don't let the agent to proceed | |
# instead, we replay the action from the replay trajectory | |
action = self._replay_manager.step() | |
else: | |
try: | |
action = self.agent.step(self.state) | |
if action is None: | |
raise LLMNoActionError('No action was returned') | |
action._source = EventSource.AGENT # type: ignore [attr-defined] | |
except ( | |
LLMMalformedActionError, | |
LLMNoActionError, | |
LLMResponseError, | |
FunctionCallValidationError, | |
FunctionCallNotExistsError, | |
) as e: | |
self.event_stream.add_event( | |
ErrorObservation( | |
content=str(e), | |
), | |
EventSource.AGENT, | |
) | |
return | |
except (ContextWindowExceededError, BadRequestError, OpenAIError) as e: | |
# FIXME: this is a hack until a litellm fix is confirmed | |
# Check if this is a nested context window error | |
# We have to rely on string-matching because LiteLLM doesn't consistently | |
# wrap the failure in a ContextWindowExceededError | |
error_str = str(e).lower() | |
if ( | |
'contextwindowexceedederror' in error_str | |
or 'prompt is too long' in error_str | |
or 'input length and `max_tokens` exceed context limit' in error_str | |
or 'please reduce the length of either one' | |
in error_str # For OpenRouter context window errors | |
or isinstance(e, ContextWindowExceededError) | |
): | |
if self.agent.config.enable_history_truncation: | |
self._handle_long_context_error() | |
return | |
else: | |
raise LLMContextWindowExceedError() | |
else: | |
raise e | |
if action.runnable: | |
if self.state.confirmation_mode and ( | |
type(action) is CmdRunAction or type(action) is IPythonRunCellAction | |
): | |
action.confirmation_state = ( | |
ActionConfirmationStatus.AWAITING_CONFIRMATION | |
) | |
self._pending_action = action | |
if not isinstance(action, NullAction): | |
if ( | |
hasattr(action, 'confirmation_state') | |
and action.confirmation_state | |
== ActionConfirmationStatus.AWAITING_CONFIRMATION | |
): | |
await self.set_agent_state_to(AgentState.AWAITING_USER_CONFIRMATION) | |
# Create and log metrics for frontend display | |
self._prepare_metrics_for_frontend(action) | |
self.event_stream.add_event(action, action._source) # type: ignore [attr-defined] | |
await self.update_state_after_step() | |
log_level = 'info' if LOG_ALL_EVENTS else 'debug' | |
self.log(log_level, str(action), extra={'msg_type': 'ACTION'}) | |
def _notify_on_llm_retry(self, retries: int, max: int) -> None: | |
if self.status_callback is not None: | |
msg_id = 'STATUS$LLM_RETRY' | |
self.status_callback( | |
'info', msg_id, f'Retrying LLM request, {retries} / {max}' | |
) | |
async def _handle_traffic_control( | |
self, limit_type: str, current_value: float, max_value: float | |
) -> bool: | |
"""Handles agent state after hitting the traffic control limit. | |
Args: | |
limit_type (str): The type of limit that was hit. | |
current_value (float): The current value of the limit. | |
max_value (float): The maximum value of the limit. | |
""" | |
stop_step = False | |
if self.state.traffic_control_state == TrafficControlState.PAUSED: | |
self.log( | |
'debug', 'Hitting traffic control, temporarily resume upon user request' | |
) | |
self.state.traffic_control_state = TrafficControlState.NORMAL | |
else: | |
self.state.traffic_control_state = TrafficControlState.THROTTLING | |
# Format values as integers for iterations, keep decimals for budget | |
if limit_type == 'iteration': | |
current_str = str(int(current_value)) | |
max_str = str(int(max_value)) | |
else: | |
current_str = f'{current_value:.2f}' | |
max_str = f'{max_value:.2f}' | |
if self.headless_mode: | |
e = RuntimeError( | |
f'Agent reached maximum {limit_type} in headless mode. ' | |
f'Current {limit_type}: {current_str}, max {limit_type}: {max_str}' | |
) | |
await self._react_to_exception(e) | |
else: | |
e = RuntimeError( | |
f'Agent reached maximum {limit_type}. ' | |
f'Current {limit_type}: {current_str}, max {limit_type}: {max_str}. ' | |
) | |
# FIXME: this isn't really an exception--we should have a different path | |
await self._react_to_exception(e) | |
stop_step = True | |
return stop_step | |
def _pending_action(self) -> Action | None: | |
"""Get the current pending action with time tracking. | |
Returns: | |
Action | None: The current pending action, or None if there isn't one. | |
""" | |
if self._pending_action_info is None: | |
return None | |
action, timestamp = self._pending_action_info | |
current_time = time.time() | |
elapsed_time = current_time - timestamp | |
# Log if the pending action has been active for a long time (but don't clear it) | |
if elapsed_time > 60.0: # 1 minute - just for logging purposes | |
action_id = getattr(action, 'id', 'unknown') | |
action_type = type(action).__name__ | |
self.log( | |
'warning', | |
f'Pending action active for {elapsed_time:.2f}s: {action_type} (id={action_id})', | |
extra={'msg_type': 'PENDING_ACTION_TIMEOUT'}, | |
) | |
return action | |
def _pending_action(self, action: Action | None) -> None: | |
"""Set or clear the pending action with timestamp and logging. | |
Args: | |
action: The action to set as pending, or None to clear. | |
""" | |
if action is None: | |
if self._pending_action_info is not None: | |
prev_action, timestamp = self._pending_action_info | |
action_id = getattr(prev_action, 'id', 'unknown') | |
action_type = type(prev_action).__name__ | |
elapsed_time = time.time() - timestamp | |
self.log( | |
'debug', | |
f'Cleared pending action after {elapsed_time:.2f}s: {action_type} (id={action_id})', | |
extra={'msg_type': 'PENDING_ACTION_CLEARED'}, | |
) | |
self._pending_action_info = None | |
else: | |
action_id = getattr(action, 'id', 'unknown') | |
action_type = type(action).__name__ | |
self.log( | |
'debug', | |
f'Set pending action: {action_type} (id={action_id})', | |
extra={'msg_type': 'PENDING_ACTION_SET'}, | |
) | |
self._pending_action_info = (action, time.time()) | |
def get_state(self) -> State: | |
"""Returns the current running state object. | |
Returns: | |
State: The current state object. | |
""" | |
return self.state | |
def set_initial_state( | |
self, | |
state: State | None, | |
max_iterations: int, | |
confirmation_mode: bool = False, | |
) -> None: | |
"""Sets the initial state for the agent, either from the previous session, or from a parent agent, or by creating a new one. | |
Args: | |
state: The state to initialize with, or None to create a new state. | |
max_iterations: The maximum number of iterations allowed for the task. | |
confirmation_mode: Whether to enable confirmation mode. | |
""" | |
# state can come from: | |
# - the previous session, in which case it has history | |
# - from a parent agent, in which case it has no history | |
# - None / a new state | |
# If state is None, we create a brand new state and still load the event stream so we can restore the history | |
if state is None: | |
self.state = State( | |
session_id=self.id.removesuffix('-delegate'), | |
inputs={}, | |
max_iterations=max_iterations, | |
confirmation_mode=confirmation_mode, | |
) | |
self.state.start_id = 0 | |
self.log( | |
'info', | |
f'AgentController {self.id} - created new state. start_id: {self.state.start_id}', | |
) | |
else: | |
self.state = state | |
if self.state.start_id <= -1: | |
self.state.start_id = 0 | |
self.log( | |
'info', | |
f'AgentController {self.id} initializing history from event {self.state.start_id}', | |
) | |
# Always load from the event stream to avoid losing history | |
self._init_history() | |
def get_trajectory(self, include_screenshots: bool = False) -> list[dict]: | |
# state history could be partially hidden/truncated before controller is closed | |
assert self._closed | |
return [ | |
event_to_trajectory(event, include_screenshots) | |
for event in self.state.history | |
] | |
def _init_history(self) -> None: | |
"""Initializes the agent's history from the event stream. | |
The history is a list of events that: | |
- Excludes events of types listed in self.filter_out | |
- Excludes events with hidden=True attribute | |
- For delegate events (between AgentDelegateAction and AgentDelegateObservation): | |
- Excludes all events between the action and observation | |
- Includes the delegate action and observation themselves | |
""" | |
# define range of events to fetch | |
# delegates start with a start_id and initially won't find any events | |
# otherwise we're restoring a previous session | |
start_id = self.state.start_id if self.state.start_id >= 0 else 0 | |
end_id = ( | |
self.state.end_id | |
if self.state.end_id >= 0 | |
else self.event_stream.get_latest_event_id() | |
) | |
# sanity check | |
if start_id > end_id + 1: | |
self.log( | |
'warning', | |
f'start_id {start_id} is greater than end_id + 1 ({end_id + 1}). History will be empty.', | |
) | |
self.state.history = [] | |
return | |
events: list[Event] = [] | |
# Get rest of history | |
events_to_add = list( | |
self.event_stream.search_events( | |
start_id=start_id, | |
end_id=end_id, | |
reverse=False, | |
filter=self.agent_history_filter, | |
) | |
) | |
events.extend(events_to_add) | |
# Find all delegate action/observation pairs | |
delegate_ranges: list[tuple[int, int]] = [] | |
delegate_action_ids: list[int] = [] # stack of unmatched delegate action IDs | |
for event in events: | |
if isinstance(event, AgentDelegateAction): | |
delegate_action_ids.append(event.id) | |
# Note: we can get agent=event.agent and task=event.inputs.get('task','') | |
# if we need to track these in the future | |
elif isinstance(event, AgentDelegateObservation): | |
# Match with most recent unmatched delegate action | |
if not delegate_action_ids: | |
self.log( | |
'warning', | |
f'Found AgentDelegateObservation without matching action at id={event.id}', | |
) | |
continue | |
action_id = delegate_action_ids.pop() | |
delegate_ranges.append((action_id, event.id)) | |
# Filter out events between delegate action/observation pairs | |
if delegate_ranges: | |
filtered_events: list[Event] = [] | |
current_idx = 0 | |
for start_id, end_id in sorted(delegate_ranges): | |
# Add events before delegate range | |
filtered_events.extend( | |
event for event in events[current_idx:] if event.id < start_id | |
) | |
# Add delegate action and observation | |
filtered_events.extend( | |
event for event in events if event.id in (start_id, end_id) | |
) | |
# Update index to after delegate range | |
current_idx = next( | |
(i for i, e in enumerate(events) if e.id > end_id), len(events) | |
) | |
# Add any remaining events after last delegate range | |
filtered_events.extend(events[current_idx:]) | |
self.state.history = filtered_events | |
else: | |
self.state.history = events | |
# make sure history is in sync | |
self.state.start_id = start_id | |
def _handle_long_context_error(self) -> None: | |
# When context window is exceeded, keep roughly half of agent interactions | |
kept_events = self._apply_conversation_window() | |
kept_event_ids = {e.id for e in kept_events} | |
self.log( | |
'info', | |
f'Context window exceeded. Keeping events with IDs: {kept_event_ids}', | |
) | |
# The events to forget are those that are not in the kept set | |
forgotten_event_ids = {e.id for e in self.state.history} - kept_event_ids | |
if len(kept_event_ids) == 0: | |
self.log( | |
'warning', | |
'No events kept after applying conversation window. This should not happen.', | |
) | |
# verify that the first event id in kept_event_ids is the same as the start_id | |
if len(kept_event_ids) > 0 and self.state.history[0].id not in kept_event_ids: | |
self.log( | |
'warning', | |
f'First event after applying conversation window was not kept: {self.state.history[0].id} not in {kept_event_ids}', | |
) | |
# Add an error event to trigger another step by the agent | |
self.event_stream.add_event( | |
CondensationAction( | |
forgotten_events_start_id=min(forgotten_event_ids) | |
if forgotten_event_ids | |
else 0, | |
forgotten_events_end_id=max(forgotten_event_ids) | |
if forgotten_event_ids | |
else 0, | |
), | |
EventSource.AGENT, | |
) | |
def _apply_conversation_window(self) -> list[Event]: | |
"""Cuts history roughly in half when context window is exceeded. | |
It preserves action-observation pairs and ensures that the system message, | |
the first user message, and its associated recall observation are always included | |
at the beginning of the context window. | |
The algorithm: | |
1. Identify essential initial events: System Message, First User Message, Recall Observation. | |
2. Determine the slice of recent events to potentially keep. | |
3. Validate the start of the recent slice for dangling observations. | |
4. Combine essential events and validated recent events, ensuring essentials come first. | |
Args: | |
events: List of events to filter | |
Returns: | |
Filtered list of events keeping newest half while preserving pairs and essential initial events. | |
""" | |
if not self.state.history: | |
return [] | |
history = self.state.history | |
# 1. Identify essential initial events | |
system_message: SystemMessageAction | None = None | |
first_user_msg: MessageAction | None = None | |
recall_action: RecallAction | None = None | |
recall_observation: Observation | None = None | |
# Find System Message (should be the first event, if it exists) | |
system_message = next( | |
(e for e in history if isinstance(e, SystemMessageAction)), None | |
) | |
assert ( | |
system_message is None | |
or isinstance(system_message, SystemMessageAction) | |
and system_message.id == history[0].id | |
) | |
# Find First User Message, which MUST exist | |
first_user_msg = self._first_user_message() | |
if first_user_msg is None: | |
raise RuntimeError('No first user message found in the event stream.') | |
first_user_msg_index = -1 | |
for i, event in enumerate(history): | |
if isinstance(event, MessageAction) and event.source == EventSource.USER: | |
first_user_msg = event | |
first_user_msg_index = i | |
break | |
# Find Recall Action and Observation related to the First User Message | |
if first_user_msg is not None and first_user_msg_index != -1: | |
# Look for RecallAction after the first user message | |
for i in range(first_user_msg_index + 1, len(history)): | |
event = history[i] | |
if ( | |
isinstance(event, RecallAction) | |
and event.query == first_user_msg.content | |
): | |
# Found RecallAction, now look for its Observation | |
recall_action = event | |
for j in range(i + 1, len(history)): | |
obs_event = history[j] | |
# Check for Observation caused by this RecallAction | |
if ( | |
isinstance(obs_event, Observation) | |
and obs_event.cause == recall_action.id | |
): | |
recall_observation = obs_event | |
break # Found the observation, stop inner loop | |
break # Found the recall action (and maybe obs), stop outer loop | |
essential_events: list[Event] = [] | |
if system_message: | |
essential_events.append(system_message) | |
if first_user_msg: | |
essential_events.append(first_user_msg) | |
# Also keep the RecallAction that triggered the essential RecallObservation | |
if recall_action: | |
essential_events.append(recall_action) | |
if recall_observation: | |
essential_events.append(recall_observation) | |
# 2. Determine the slice of recent events to potentially keep | |
num_non_essential_events = len(history) - len(essential_events) | |
# Keep roughly half of the non-essential events, minimum 1 | |
num_recent_to_keep = max(1, num_non_essential_events // 2) | |
# Calculate the starting index for the recent slice | |
slice_start_index = len(history) - num_recent_to_keep | |
slice_start_index = max(0, slice_start_index) # Ensure index is not negative | |
recent_events_slice = history[slice_start_index:] | |
# 3. Validate the start of the recent slice for dangling observations | |
# IMPORTANT: Most observations in history are tool call results, which cannot be without their action, or we get an LLM API error | |
first_valid_event_index = 0 | |
for i, event in enumerate(recent_events_slice): | |
if isinstance(event, Observation): | |
first_valid_event_index += 1 | |
else: | |
break | |
# If all events in the slice are dangling observations, we need to keep at least one | |
if first_valid_event_index == len(recent_events_slice): | |
self.log( | |
'warning', | |
'All recent events are dangling observations, which we truncate. This means the agent has only the essential first events. This should not happen.', | |
) | |
# Adjust the recent_events_slice if dangling observations were found at the start | |
if first_valid_event_index < len(recent_events_slice): | |
validated_recent_events = recent_events_slice[first_valid_event_index:] | |
if first_valid_event_index > 0: | |
self.log( | |
'debug', | |
f'Removed {first_valid_event_index} dangling observation(s) from the start of recent event slice.', | |
) | |
else: | |
validated_recent_events = [] | |
# 4. Combine essential events and validated recent events | |
events_to_keep: list[Event] = essential_events + validated_recent_events | |
self.log('debug', f'History truncated. Kept {len(events_to_keep)} events.') | |
return events_to_keep | |
def _is_stuck(self) -> bool: | |
"""Checks if the agent or its delegate is stuck in a loop. | |
Returns: | |
bool: True if the agent is stuck, False otherwise. | |
""" | |
# check if delegate stuck | |
if self.delegate and self.delegate._is_stuck(): | |
return True | |
return self._stuck_detector.is_stuck(self.headless_mode) | |
def _prepare_metrics_for_frontend(self, action: Action) -> None: | |
"""Create a minimal metrics object for frontend display and log it. | |
To avoid performance issues with long conversations, we only keep: | |
- accumulated_cost: The current total cost | |
- accumulated_token_usage: Accumulated token statistics across all API calls | |
This includes metrics from both the agent's LLM and the condenser's LLM if it exists. | |
Args: | |
action: The action to attach metrics to | |
""" | |
# Get metrics from agent LLM | |
agent_metrics = self.agent.llm.metrics | |
# Get metrics from condenser LLM if it exists | |
condenser_metrics: TokenUsage | None = None | |
if hasattr(self.agent, 'condenser') and hasattr(self.agent.condenser, 'llm'): | |
condenser_metrics = self.agent.condenser.llm.metrics | |
# Create a new minimal metrics object with just what the frontend needs | |
metrics = Metrics(model_name=agent_metrics.model_name) | |
# Set accumulated cost (sum of agent and condenser costs) | |
metrics.accumulated_cost = agent_metrics.accumulated_cost | |
if condenser_metrics: | |
metrics.accumulated_cost += condenser_metrics.accumulated_cost | |
# Set accumulated token usage (sum of agent and condenser token usage) | |
# Use a deep copy to ensure we don't modify the original object | |
metrics._accumulated_token_usage = ( | |
agent_metrics.accumulated_token_usage.model_copy(deep=True) | |
) | |
if condenser_metrics: | |
metrics._accumulated_token_usage = ( | |
metrics._accumulated_token_usage | |
+ condenser_metrics.accumulated_token_usage | |
) | |
action.llm_metrics = metrics | |
# Log the metrics information for debugging | |
# Get the latest usage directly from the agent's metrics | |
latest_usage = None | |
if self.agent.llm.metrics.token_usages: | |
latest_usage = self.agent.llm.metrics.token_usages[-1] | |
accumulated_usage = self.agent.llm.metrics.accumulated_token_usage | |
self.log( | |
'debug', | |
f'Action metrics - accumulated_cost: {metrics.accumulated_cost}, ' | |
f'latest tokens (prompt/completion/cache_read/cache_write): ' | |
f'{latest_usage.prompt_tokens if latest_usage else 0}/' | |
f'{latest_usage.completion_tokens if latest_usage else 0}/' | |
f'{latest_usage.cache_read_tokens if latest_usage else 0}/' | |
f'{latest_usage.cache_write_tokens if latest_usage else 0}, ' | |
f'accumulated tokens (prompt/completion): ' | |
f'{accumulated_usage.prompt_tokens}/' | |
f'{accumulated_usage.completion_tokens}', | |
extra={'msg_type': 'METRICS'}, | |
) | |
def __repr__(self) -> str: | |
pending_action_info = '<none>' | |
if ( | |
hasattr(self, '_pending_action_info') | |
and self._pending_action_info is not None | |
): | |
action, timestamp = self._pending_action_info | |
action_id = getattr(action, 'id', 'unknown') | |
action_type = type(action).__name__ | |
elapsed_time = time.time() - timestamp | |
pending_action_info = ( | |
f'{action_type}(id={action_id}, elapsed={elapsed_time:.2f}s)' | |
) | |
return ( | |
f'AgentController(id={getattr(self, "id", "<uninitialized>")}, ' | |
f'agent={getattr(self, "agent", "<uninitialized>")!r}, ' | |
f'event_stream={getattr(self, "event_stream", "<uninitialized>")!r}, ' | |
f'state={getattr(self, "state", "<uninitialized>")!r}, ' | |
f'delegate={getattr(self, "delegate", "<uninitialized>")!r}, ' | |
f'_pending_action={pending_action_info})' | |
) | |
def _is_awaiting_observation(self) -> bool: | |
events = self.event_stream.get_events(reverse=True) | |
for event in events: | |
if isinstance(event, AgentStateChangedObservation): | |
result = event.agent_state == AgentState.RUNNING | |
return result | |
return False | |
def _first_user_message(self) -> MessageAction | None: | |
"""Get the first user message for this agent. | |
For regular agents, this is the first user message from the beginning (start_id=0). | |
For delegate agents, this is the first user message after the delegate's start_id. | |
Returns: | |
MessageAction | None: The first user message, or None if no user message found | |
""" | |
# Return cached message if any | |
if self._cached_first_user_message is not None: | |
return self._cached_first_user_message | |
# Find the first user message | |
self._cached_first_user_message = next( | |
( | |
e | |
for e in self.event_stream.get_events( | |
start_id=self.state.start_id, | |
) | |
if isinstance(e, MessageAction) and e.source == EventSource.USER | |
), | |
None, | |
) | |
return self._cached_first_user_message | |