Backup-bdg's picture
Upload 964 files
51ff9e5 verified
import copy
import os
import time
import warnings
from functools import partial
from typing import Any, Callable
import httpx
from openhands.core.config import LLMConfig
with warnings.catch_warnings():
warnings.simplefilter('ignore')
import litellm
from litellm import ChatCompletionMessageToolCall, ModelInfo, PromptTokensDetails
from litellm import Message as LiteLLMMessage
from litellm import completion as litellm_completion
from litellm import completion_cost as litellm_completion_cost
from litellm.exceptions import (
RateLimitError,
)
from litellm.types.utils import CostPerToken, ModelResponse, Usage
from litellm.utils import create_pretrained_tokenizer
from openhands.core.exceptions import LLMNoResponseError
from openhands.core.logger import openhands_logger as logger
from openhands.core.message import Message
from openhands.llm.debug_mixin import DebugMixin
from openhands.llm.fn_call_converter import (
STOP_WORDS,
convert_fncall_messages_to_non_fncall_messages,
convert_non_fncall_messages_to_fncall_messages,
)
from openhands.llm.metrics import Metrics
from openhands.llm.retry_mixin import RetryMixin
__all__ = ['LLM']
# tuple of exceptions to retry on
LLM_RETRY_EXCEPTIONS: tuple[type[Exception], ...] = (
RateLimitError,
litellm.Timeout,
litellm.InternalServerError,
LLMNoResponseError,
)
# cache prompt supporting models
# remove this when we gemini and deepseek are supported
CACHE_PROMPT_SUPPORTED_MODELS = [
'claude-3-7-sonnet-20250219',
'claude-sonnet-3-7-latest',
'claude-3.7-sonnet',
'claude-3-5-sonnet-20241022',
'claude-3-5-sonnet-20240620',
'claude-3-5-haiku-20241022',
'claude-3-haiku-20240307',
'claude-3-opus-20240229',
'claude-sonnet-4-20250514',
'claude-opus-4-20250514',
]
# function calling supporting models
FUNCTION_CALLING_SUPPORTED_MODELS = [
'claude-3-7-sonnet-20250219',
'claude-sonnet-3-7-latest',
'claude-3-5-sonnet',
'claude-3-5-sonnet-20240620',
'claude-3-5-sonnet-20241022',
'claude-3.5-haiku',
'claude-3-5-haiku-20241022',
'claude-sonnet-4-20250514',
'claude-opus-4-20250514',
'gpt-4o-mini',
'gpt-4o',
'o1-2024-12-17',
'o3-mini-2025-01-31',
'o3-mini',
'o3',
'o3-2025-04-16',
'o4-mini',
'o4-mini-2025-04-16',
'gemini-2.5-pro',
'gpt-4.1',
]
REASONING_EFFORT_SUPPORTED_MODELS = [
'o1-2024-12-17',
'o1',
'o3',
'o3-2025-04-16',
'o3-mini-2025-01-31',
'o3-mini',
'o4-mini',
'o4-mini-2025-04-16',
]
MODELS_WITHOUT_STOP_WORDS = [
'o1-mini',
'o1-preview',
'o1',
'o1-2024-12-17',
]
class LLM(RetryMixin, DebugMixin):
"""The LLM class represents a Language Model instance.
Attributes:
config: an LLMConfig object specifying the configuration of the LLM.
"""
def __init__(
self,
config: LLMConfig,
metrics: Metrics | None = None,
retry_listener: Callable[[int, int], None] | None = None,
) -> None:
"""Initializes the LLM. If LLMConfig is passed, its values will be the fallback.
Passing simple parameters always overrides config.
Args:
config: The LLM configuration.
metrics: The metrics to use.
"""
self._tried_model_info = False
self.metrics: Metrics = (
metrics if metrics is not None else Metrics(model_name=config.model)
)
self.cost_metric_supported: bool = True
self.config: LLMConfig = copy.deepcopy(config)
self.model_info: ModelInfo | None = None
self.retry_listener = retry_listener
if self.config.log_completions:
if self.config.log_completions_folder is None:
raise RuntimeError(
'log_completions_folder is required when log_completions is enabled'
)
os.makedirs(self.config.log_completions_folder, exist_ok=True)
# call init_model_info to initialize config.max_output_tokens
# which is used in partial function
with warnings.catch_warnings():
warnings.simplefilter('ignore')
self.init_model_info()
if self.vision_is_active():
logger.debug('LLM: model has vision enabled')
if self.is_caching_prompt_active():
logger.debug('LLM: caching prompt enabled')
if self.is_function_calling_active():
logger.debug('LLM: model supports function calling')
# if using a custom tokenizer, make sure it's loaded and accessible in the format expected by litellm
if self.config.custom_tokenizer is not None:
self.tokenizer = create_pretrained_tokenizer(self.config.custom_tokenizer)
else:
self.tokenizer = None
# set up the completion function
kwargs: dict[str, Any] = {
'temperature': self.config.temperature,
'max_completion_tokens': self.config.max_output_tokens,
}
if self.config.top_k is not None:
# openai doesn't expose top_k
# litellm will handle it a bit differently than the openai-compatible params
kwargs['top_k'] = self.config.top_k
if (
self.config.model.lower() in REASONING_EFFORT_SUPPORTED_MODELS
or self.config.model.split('/')[-1] in REASONING_EFFORT_SUPPORTED_MODELS
):
kwargs['reasoning_effort'] = self.config.reasoning_effort
kwargs.pop(
'temperature'
) # temperature is not supported for reasoning models
# Azure issue: https://github.com/All-Hands-AI/OpenHands/issues/6777
if self.config.model.startswith('azure'):
kwargs['max_tokens'] = self.config.max_output_tokens
kwargs.pop('max_completion_tokens')
self._completion = partial(
litellm_completion,
model=self.config.model,
api_key=self.config.api_key.get_secret_value()
if self.config.api_key
else None,
base_url=self.config.base_url,
api_version=self.config.api_version,
custom_llm_provider=self.config.custom_llm_provider,
timeout=self.config.timeout,
top_p=self.config.top_p,
drop_params=self.config.drop_params,
seed=self.config.seed,
**kwargs,
)
self._completion_unwrapped = self._completion
@self.retry_decorator(
num_retries=self.config.num_retries,
retry_exceptions=LLM_RETRY_EXCEPTIONS,
retry_min_wait=self.config.retry_min_wait,
retry_max_wait=self.config.retry_max_wait,
retry_multiplier=self.config.retry_multiplier,
retry_listener=self.retry_listener,
)
def wrapper(*args: Any, **kwargs: Any) -> Any:
"""Wrapper for the litellm completion function. Logs the input and output of the completion function."""
from openhands.io import json
messages_kwarg: list[dict[str, Any]] | dict[str, Any] = []
mock_function_calling = not self.is_function_calling_active()
# some callers might send the model and messages directly
# litellm allows positional args, like completion(model, messages, **kwargs)
if len(args) > 1:
# ignore the first argument if it's provided (it would be the model)
# design wise: we don't allow overriding the configured values
# implementation wise: the partial function set the model as a kwarg already
# as well as other kwargs
messages_kwarg = args[1] if len(args) > 1 else args[0]
kwargs['messages'] = messages_kwarg
# remove the first args, they're sent in kwargs
args = args[2:]
elif 'messages' in kwargs:
messages_kwarg = kwargs['messages']
# ensure we work with a list of messages
messages: list[dict[str, Any]] = (
messages_kwarg if isinstance(messages_kwarg, list) else [messages_kwarg]
)
# handle conversion of to non-function calling messages if needed
original_fncall_messages = copy.deepcopy(messages)
mock_fncall_tools = None
# if the agent or caller has defined tools, and we mock via prompting, convert the messages
if mock_function_calling and 'tools' in kwargs:
add_in_context_learning_example = True
if (
'openhands-lm' in self.config.model
or 'devstral' in self.config.model
):
add_in_context_learning_example = False
messages = convert_fncall_messages_to_non_fncall_messages(
messages,
kwargs['tools'],
add_in_context_learning_example=add_in_context_learning_example,
)
kwargs['messages'] = messages
# add stop words if the model supports it
if self.config.model not in MODELS_WITHOUT_STOP_WORDS:
kwargs['stop'] = STOP_WORDS
mock_fncall_tools = kwargs.pop('tools')
if 'openhands-lm' in self.config.model:
# If we don't have this, we might run into issue when serving openhands-lm
# using SGLang
# BadRequestError: litellm.BadRequestError: OpenAIException - Error code: 400 - {'object': 'error', 'message': '400', 'type': 'Failed to parse fc related info to json format!', 'param': None, 'code': 400}
kwargs['tool_choice'] = 'none'
else:
# tool_choice should not be specified when mocking function calling
kwargs.pop('tool_choice', None)
# if we have no messages, something went very wrong
if not messages:
raise ValueError(
'The messages list is empty. At least one message is required.'
)
# log the entire LLM prompt
self.log_prompt(messages)
# set litellm modify_params to the configured value
# True by default to allow litellm to do transformations like adding a default message, when a message is empty
# NOTE: this setting is global; unlike drop_params, it cannot be overridden in the litellm completion partial
litellm.modify_params = self.config.modify_params
# if we're not using litellm proxy, remove the extra_body
if 'litellm_proxy' not in self.config.model:
kwargs.pop('extra_body', None)
# Record start time for latency measurement
start_time = time.time()
# we don't support streaming here, thus we get a ModelResponse
resp: ModelResponse = self._completion_unwrapped(*args, **kwargs)
# Calculate and record latency
latency = time.time() - start_time
response_id = resp.get('id', 'unknown')
self.metrics.add_response_latency(latency, response_id)
non_fncall_response = copy.deepcopy(resp)
# if we mocked function calling, and we have tools, convert the response back to function calling format
if mock_function_calling and mock_fncall_tools is not None:
if len(resp.choices) < 1:
raise LLMNoResponseError(
'Response choices is less than 1 - This is only seen in Gemini models so far. Response: '
+ str(resp)
)
non_fncall_response_message = resp.choices[0].message
# messages is already a list with proper typing from line 223
fn_call_messages_with_response = (
convert_non_fncall_messages_to_fncall_messages(
messages + [non_fncall_response_message], mock_fncall_tools
)
)
fn_call_response_message = fn_call_messages_with_response[-1]
if not isinstance(fn_call_response_message, LiteLLMMessage):
fn_call_response_message = LiteLLMMessage(
**fn_call_response_message
)
resp.choices[0].message = fn_call_response_message
# Check if resp has 'choices' key with at least one item
if not resp.get('choices') or len(resp['choices']) < 1:
raise LLMNoResponseError(
'Response choices is less than 1 - This is only seen in Gemini models so far. Response: '
+ str(resp)
)
message_back: str = resp['choices'][0]['message']['content'] or ''
tool_calls: list[ChatCompletionMessageToolCall] = resp['choices'][0][
'message'
].get('tool_calls', [])
if tool_calls:
for tool_call in tool_calls:
fn_name = tool_call.function.name
fn_args = tool_call.function.arguments
message_back += f'\nFunction call: {fn_name}({fn_args})'
# log the LLM response
self.log_response(message_back)
# post-process the response first to calculate cost
cost = self._post_completion(resp)
# log for evals or other scripts that need the raw completion
if self.config.log_completions:
assert self.config.log_completions_folder is not None
log_file = os.path.join(
self.config.log_completions_folder,
# use the metric model name (for draft editor)
f'{self.metrics.model_name.replace("/", "__")}-{time.time()}.json',
)
# set up the dict to be logged
_d = {
'messages': messages,
'response': resp,
'args': args,
'kwargs': {
k: v
for k, v in kwargs.items()
if k not in ('messages', 'client')
},
'timestamp': time.time(),
'cost': cost,
}
# if non-native function calling, save messages/response separately
if mock_function_calling:
# Overwrite response as non-fncall to be consistent with messages
_d['response'] = non_fncall_response
# Save fncall_messages/response separately
_d['fncall_messages'] = original_fncall_messages
_d['fncall_response'] = resp
with open(log_file, 'w') as f:
f.write(json.dumps(_d))
return resp
self._completion = wrapper
@property
def completion(self) -> Callable:
"""Decorator for the litellm completion function.
Check the complete documentation at https://litellm.vercel.app/docs/completion
"""
return self._completion
def init_model_info(self) -> None:
if self._tried_model_info:
return
self._tried_model_info = True
try:
if self.config.model.startswith('openrouter'):
self.model_info = litellm.get_model_info(self.config.model)
except Exception as e:
logger.debug(f'Error getting model info: {e}')
if self.config.model.startswith('litellm_proxy/'):
# IF we are using LiteLLM proxy, get model info from LiteLLM proxy
# GET {base_url}/v1/model/info with litellm_model_id as path param
base_url = self.config.base_url.strip() if self.config.base_url else ''
if not base_url.startswith(('http://', 'https://')):
base_url = 'http://' + base_url
response = httpx.get(
f'{base_url}/v1/model/info',
headers={
'Authorization': f'Bearer {self.config.api_key.get_secret_value() if self.config.api_key else None}'
},
)
resp_json = response.json()
if 'data' not in resp_json:
logger.error(
f'Error getting model info from LiteLLM proxy: {resp_json}'
)
all_model_info = resp_json.get('data', [])
current_model_info = next(
(
info
for info in all_model_info
if info['model_name']
== self.config.model.removeprefix('litellm_proxy/')
),
None,
)
if current_model_info:
self.model_info = current_model_info['model_info']
logger.debug(f'Got model info from litellm proxy: {self.model_info}')
# Last two attempts to get model info from NAME
if not self.model_info:
try:
self.model_info = litellm.get_model_info(
self.config.model.split(':')[0]
)
# noinspection PyBroadException
except Exception:
pass
if not self.model_info:
try:
self.model_info = litellm.get_model_info(
self.config.model.split('/')[-1]
)
# noinspection PyBroadException
except Exception:
pass
from openhands.io import json
logger.debug(
f'Model info: {json.dumps({"model": self.config.model, "base_url": self.config.base_url}, indent=2)}'
)
if self.config.model.startswith('huggingface'):
# HF doesn't support the OpenAI default value for top_p (1)
logger.debug(
f'Setting top_p to 0.9 for Hugging Face model: {self.config.model}'
)
self.config.top_p = 0.9 if self.config.top_p == 1 else self.config.top_p
# Set the max tokens in an LM-specific way if not set
if self.config.max_input_tokens is None:
if (
self.model_info is not None
and 'max_input_tokens' in self.model_info
and isinstance(self.model_info['max_input_tokens'], int)
):
self.config.max_input_tokens = self.model_info['max_input_tokens']
else:
# Safe fallback for any potentially viable model
self.config.max_input_tokens = 4096
if self.config.max_output_tokens is None:
# Safe default for any potentially viable model
self.config.max_output_tokens = 4096
if self.model_info is not None:
# max_output_tokens has precedence over max_tokens, if either exists.
# litellm has models with both, one or none of these 2 parameters!
if 'max_output_tokens' in self.model_info and isinstance(
self.model_info['max_output_tokens'], int
):
self.config.max_output_tokens = self.model_info['max_output_tokens']
elif 'max_tokens' in self.model_info and isinstance(
self.model_info['max_tokens'], int
):
self.config.max_output_tokens = self.model_info['max_tokens']
if any(
model in self.config.model
for model in ['claude-3-7-sonnet', 'claude-3.7-sonnet']
):
self.config.max_output_tokens = 64000 # litellm set max to 128k, but that requires a header to be set
# Initialize function calling capability
# Check if model name is in our supported list
model_name_supported = (
self.config.model in FUNCTION_CALLING_SUPPORTED_MODELS
or self.config.model.split('/')[-1] in FUNCTION_CALLING_SUPPORTED_MODELS
or any(m in self.config.model for m in FUNCTION_CALLING_SUPPORTED_MODELS)
)
# Handle native_tool_calling user-defined configuration
if self.config.native_tool_calling is None:
self._function_calling_active = model_name_supported
else:
self._function_calling_active = self.config.native_tool_calling
def vision_is_active(self) -> bool:
with warnings.catch_warnings():
warnings.simplefilter('ignore')
return not self.config.disable_vision and self._supports_vision()
def _supports_vision(self) -> bool:
"""Acquire from litellm if model is vision capable.
Returns:
bool: True if model is vision capable. Return False if model not supported by litellm.
"""
# litellm.supports_vision currently returns False for 'openai/gpt-...' or 'anthropic/claude-...' (with prefixes)
# but model_info will have the correct value for some reason.
# we can go with it, but we will need to keep an eye if model_info is correct for Vertex or other providers
# remove when litellm is updated to fix https://github.com/BerriAI/litellm/issues/5608
# Check both the full model name and the name after proxy prefix for vision support
return (
litellm.supports_vision(self.config.model)
or litellm.supports_vision(self.config.model.split('/')[-1])
or (
self.model_info is not None
and self.model_info.get('supports_vision', False)
)
)
def is_caching_prompt_active(self) -> bool:
"""Check if prompt caching is supported and enabled for current model.
Returns:
boolean: True if prompt caching is supported and enabled for the given model.
"""
return (
self.config.caching_prompt is True
and (
self.config.model in CACHE_PROMPT_SUPPORTED_MODELS
or self.config.model.split('/')[-1] in CACHE_PROMPT_SUPPORTED_MODELS
)
# We don't need to look-up model_info, because only Anthropic models needs the explicit caching breakpoint
)
def is_function_calling_active(self) -> bool:
"""Returns whether function calling is supported and enabled for this LLM instance.
The result is cached during initialization for performance.
"""
return self._function_calling_active
def _post_completion(self, response: ModelResponse) -> float:
"""Post-process the completion response.
Logs the cost and usage stats of the completion call.
"""
try:
cur_cost = self._completion_cost(response)
except Exception:
cur_cost = 0
stats = ''
if self.cost_metric_supported:
# keep track of the cost
stats = 'Cost: %.2f USD | Accumulated Cost: %.2f USD\n' % (
cur_cost,
self.metrics.accumulated_cost,
)
# Add latency to stats if available
if self.metrics.response_latencies:
latest_latency = self.metrics.response_latencies[-1]
stats += 'Response Latency: %.3f seconds\n' % latest_latency.latency
usage: Usage | None = response.get('usage')
response_id = response.get('id', 'unknown')
if usage:
# keep track of the input and output tokens
prompt_tokens = usage.get('prompt_tokens', 0)
completion_tokens = usage.get('completion_tokens', 0)
if prompt_tokens:
stats += 'Input tokens: ' + str(prompt_tokens)
if completion_tokens:
stats += (
(' | ' if prompt_tokens else '')
+ 'Output tokens: '
+ str(completion_tokens)
+ '\n'
)
# read the prompt cache hit, if any
prompt_tokens_details: PromptTokensDetails = usage.get(
'prompt_tokens_details'
)
cache_hit_tokens = (
prompt_tokens_details.cached_tokens
if prompt_tokens_details and prompt_tokens_details.cached_tokens
else 0
)
if cache_hit_tokens:
stats += 'Input tokens (cache hit): ' + str(cache_hit_tokens) + '\n'
# For Anthropic, the cache writes have a different cost than regular input tokens
# but litellm doesn't separate them in the usage stats
# we can read it from the provider-specific extra field
model_extra = usage.get('model_extra', {})
cache_write_tokens = model_extra.get('cache_creation_input_tokens', 0)
if cache_write_tokens:
stats += 'Input tokens (cache write): ' + str(cache_write_tokens) + '\n'
# Get context window from model info
context_window = 0
if self.model_info and 'max_input_tokens' in self.model_info:
context_window = self.model_info['max_input_tokens']
logger.debug(f'Using context window: {context_window}')
# Record in metrics
# We'll treat cache_hit_tokens as "cache read" and cache_write_tokens as "cache write"
self.metrics.add_token_usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
cache_read_tokens=cache_hit_tokens,
cache_write_tokens=cache_write_tokens,
context_window=context_window,
response_id=response_id,
)
# log the stats
if stats:
logger.debug(stats)
return cur_cost
def get_token_count(self, messages: list[dict] | list[Message]) -> int:
"""Get the number of tokens in a list of messages. Use dicts for better token counting.
Args:
messages (list): A list of messages, either as a list of dicts or as a list of Message objects.
Returns:
int: The number of tokens.
"""
# attempt to convert Message objects to dicts, litellm expects dicts
if (
isinstance(messages, list)
and len(messages) > 0
and isinstance(messages[0], Message)
):
logger.info(
'Message objects now include serialized tool calls in token counting'
)
# Assert the expected type for format_messages_for_llm
assert isinstance(messages, list) and all(
isinstance(m, Message) for m in messages
), 'Expected list of Message objects'
# We've already asserted that messages is a list of Message objects
# Use explicit typing to satisfy mypy
messages_typed: list[Message] = messages # type: ignore
messages = self.format_messages_for_llm(messages_typed)
# try to get the token count with the default litellm tokenizers
# or the custom tokenizer if set for this LLM configuration
try:
return int(
litellm.token_counter(
model=self.config.model,
messages=messages,
custom_tokenizer=self.tokenizer,
)
)
except Exception as e:
# limit logspam in case token count is not supported
logger.error(
f'Error getting token count for\n model {self.config.model}\n{e}'
+ (
f'\ncustom_tokenizer: {self.config.custom_tokenizer}'
if self.config.custom_tokenizer is not None
else ''
)
)
return 0
def _is_local(self) -> bool:
"""Determines if the system is using a locally running LLM.
Returns:
boolean: True if executing a local model.
"""
if self.config.base_url is not None:
for substring in ['localhost', '127.0.0.1', '0.0.0.0']:
if substring in self.config.base_url:
return True
elif self.config.model is not None:
if self.config.model.startswith('ollama'):
return True
return False
def _completion_cost(self, response: Any) -> float:
"""Calculate completion cost and update metrics with running total.
Calculate the cost of a completion response based on the model. Local models are treated as free.
Add the current cost into total cost in metrics.
Args:
response: A response from a model invocation.
Returns:
number: The cost of the response.
"""
if not self.cost_metric_supported:
return 0.0
extra_kwargs = {}
if (
self.config.input_cost_per_token is not None
and self.config.output_cost_per_token is not None
):
cost_per_token = CostPerToken(
input_cost_per_token=self.config.input_cost_per_token,
output_cost_per_token=self.config.output_cost_per_token,
)
logger.debug(f'Using custom cost per token: {cost_per_token}')
extra_kwargs['custom_cost_per_token'] = cost_per_token
# try directly get response_cost from response
_hidden_params = getattr(response, '_hidden_params', {})
cost = _hidden_params.get('additional_headers', {}).get(
'llm_provider-x-litellm-response-cost', None
)
if cost is not None:
cost = float(cost)
logger.debug(f'Got response_cost from response: {cost}')
try:
if cost is None:
try:
cost = litellm_completion_cost(
completion_response=response, **extra_kwargs
)
except Exception as e:
logger.debug(f'Error getting cost from litellm: {e}')
if cost is None:
_model_name = '/'.join(self.config.model.split('/')[1:])
cost = litellm_completion_cost(
completion_response=response, model=_model_name, **extra_kwargs
)
logger.debug(
f'Using fallback model name {_model_name} to get cost: {cost}'
)
self.metrics.add_cost(float(cost))
return float(cost)
except Exception:
self.cost_metric_supported = False
logger.debug('Cost calculation not supported for this model.')
return 0.0
def __str__(self) -> str:
if self.config.api_version:
return f'LLM(model={self.config.model}, api_version={self.config.api_version}, base_url={self.config.base_url})'
elif self.config.base_url:
return f'LLM(model={self.config.model}, base_url={self.config.base_url})'
return f'LLM(model={self.config.model})'
def __repr__(self) -> str:
return str(self)
def reset(self) -> None:
self.metrics.reset()
def format_messages_for_llm(self, messages: Message | list[Message]) -> list[dict]:
if isinstance(messages, Message):
messages = [messages]
# set flags to know how to serialize the messages
for message in messages:
message.cache_enabled = self.is_caching_prompt_active()
message.vision_enabled = self.vision_is_active()
message.function_calling_enabled = self.is_function_calling_active()
if 'deepseek' in self.config.model:
message.force_string_serializer = True
# let pydantic handle the serialization
return [message.model_dump() for message in messages]