Spaces:
Build error
Build error
import copy | |
import time | |
from pydantic import BaseModel, Field | |
class Cost(BaseModel): | |
model: str | |
cost: float | |
timestamp: float = Field(default_factory=time.time) | |
class ResponseLatency(BaseModel): | |
"""Metric tracking the round-trip time per completion call.""" | |
model: str | |
latency: float | |
response_id: str | |
class TokenUsage(BaseModel): | |
"""Metric tracking detailed token usage per completion call.""" | |
model: str = Field(default='') | |
prompt_tokens: int = Field(default=0) | |
completion_tokens: int = Field(default=0) | |
cache_read_tokens: int = Field(default=0) | |
cache_write_tokens: int = Field(default=0) | |
context_window: int = Field(default=0) | |
per_turn_token: int = Field(default=0) | |
response_id: str = Field(default='') | |
def __add__(self, other: 'TokenUsage') -> 'TokenUsage': | |
"""Add two TokenUsage instances together.""" | |
return TokenUsage( | |
model=self.model, | |
prompt_tokens=self.prompt_tokens + other.prompt_tokens, | |
completion_tokens=self.completion_tokens + other.completion_tokens, | |
cache_read_tokens=self.cache_read_tokens + other.cache_read_tokens, | |
cache_write_tokens=self.cache_write_tokens + other.cache_write_tokens, | |
context_window=max(self.context_window, other.context_window), | |
per_turn_token=other.per_turn_token, | |
response_id=self.response_id, | |
) | |
class Metrics: | |
"""Metrics class can record various metrics during running and evaluation. | |
We track: | |
- accumulated_cost and costs | |
- A list of ResponseLatency | |
- A list of TokenUsage (one per call). | |
""" | |
def __init__(self, model_name: str = 'default') -> None: | |
self._accumulated_cost: float = 0.0 | |
self._costs: list[Cost] = [] | |
self._response_latencies: list[ResponseLatency] = [] | |
self.model_name = model_name | |
self._token_usages: list[TokenUsage] = [] | |
self._accumulated_token_usage: TokenUsage = TokenUsage( | |
model=model_name, | |
prompt_tokens=0, | |
completion_tokens=0, | |
cache_read_tokens=0, | |
cache_write_tokens=0, | |
context_window=0, | |
response_id='', | |
) | |
def accumulated_cost(self) -> float: | |
return self._accumulated_cost | |
def accumulated_cost(self, value: float) -> None: | |
if value < 0: | |
raise ValueError('Total cost cannot be negative.') | |
self._accumulated_cost = value | |
def costs(self) -> list[Cost]: | |
return self._costs | |
def response_latencies(self) -> list[ResponseLatency]: | |
if not hasattr(self, '_response_latencies'): | |
self._response_latencies = [] | |
return self._response_latencies | |
def response_latencies(self, value: list[ResponseLatency]) -> None: | |
self._response_latencies = value | |
def token_usages(self) -> list[TokenUsage]: | |
if not hasattr(self, '_token_usages'): | |
self._token_usages = [] | |
return self._token_usages | |
def token_usages(self, value: list[TokenUsage]) -> None: | |
self._token_usages = value | |
def accumulated_token_usage(self) -> TokenUsage: | |
"""Get the accumulated token usage, initializing it if it doesn't exist.""" | |
if not hasattr(self, '_accumulated_token_usage'): | |
self._accumulated_token_usage = TokenUsage( | |
model=self.model_name, | |
prompt_tokens=0, | |
completion_tokens=0, | |
cache_read_tokens=0, | |
cache_write_tokens=0, | |
context_window=0, | |
response_id='', | |
) | |
return self._accumulated_token_usage | |
def add_cost(self, value: float) -> None: | |
if value < 0: | |
raise ValueError('Added cost cannot be negative.') | |
self._accumulated_cost += value | |
self._costs.append(Cost(cost=value, model=self.model_name)) | |
def add_response_latency(self, value: float, response_id: str) -> None: | |
self._response_latencies.append( | |
ResponseLatency( | |
latency=max(0.0, value), model=self.model_name, response_id=response_id | |
) | |
) | |
def add_token_usage( | |
self, | |
prompt_tokens: int, | |
completion_tokens: int, | |
cache_read_tokens: int, | |
cache_write_tokens: int, | |
context_window: int, | |
response_id: str, | |
) -> None: | |
"""Add a single usage record.""" | |
# Token each turn for calculating context usage. | |
per_turn_token = prompt_tokens + completion_tokens | |
usage = TokenUsage( | |
model=self.model_name, | |
prompt_tokens=prompt_tokens, | |
completion_tokens=completion_tokens, | |
cache_read_tokens=cache_read_tokens, | |
cache_write_tokens=cache_write_tokens, | |
context_window=context_window, | |
per_turn_token=per_turn_token, | |
response_id=response_id, | |
) | |
self._token_usages.append(usage) | |
# Update accumulated token usage using the __add__ operator | |
self._accumulated_token_usage = self.accumulated_token_usage + TokenUsage( | |
model=self.model_name, | |
prompt_tokens=prompt_tokens, | |
completion_tokens=completion_tokens, | |
cache_read_tokens=cache_read_tokens, | |
cache_write_tokens=cache_write_tokens, | |
context_window=context_window, | |
per_turn_token=per_turn_token, | |
response_id='', | |
) | |
def merge(self, other: 'Metrics') -> None: | |
"""Merge 'other' metrics into this one.""" | |
self._accumulated_cost += other.accumulated_cost | |
self._costs += other._costs | |
# use the property so older picked objects that lack the field won't crash | |
self.token_usages += other.token_usages | |
self.response_latencies += other.response_latencies | |
# Merge accumulated token usage using the __add__ operator | |
self._accumulated_token_usage = ( | |
self.accumulated_token_usage + other.accumulated_token_usage | |
) | |
def get(self) -> dict: | |
"""Return the metrics in a dictionary.""" | |
return { | |
'accumulated_cost': self._accumulated_cost, | |
'accumulated_token_usage': self.accumulated_token_usage.model_dump(), | |
'costs': [cost.model_dump() for cost in self._costs], | |
'response_latencies': [ | |
latency.model_dump() for latency in self._response_latencies | |
], | |
'token_usages': [usage.model_dump() for usage in self._token_usages], | |
} | |
def reset(self) -> None: | |
self._accumulated_cost = 0.0 | |
self._costs = [] | |
self._response_latencies = [] | |
self._token_usages = [] | |
# Reset accumulated token usage with a new instance | |
self._accumulated_token_usage = TokenUsage( | |
model=self.model_name, | |
prompt_tokens=0, | |
completion_tokens=0, | |
cache_read_tokens=0, | |
cache_write_tokens=0, | |
context_window=0, | |
response_id='', | |
) | |
def log(self) -> str: | |
"""Log the metrics.""" | |
metrics = self.get() | |
logs = '' | |
for key, value in metrics.items(): | |
logs += f'{key}: {value}\n' | |
return logs | |
def copy(self) -> 'Metrics': | |
"""Create a deep copy of the Metrics object.""" | |
return copy.deepcopy(self) | |
def __repr__(self) -> str: | |
return f'Metrics({self.get()}' | |