"""Bash-related tests for the DockerRuntime, which connects to the ActionExecutor running in the sandbox. Example usage: ```bash export ALLHANDS_API_KEY="YOUR_API_KEY" export RUNTIME=remote export SANDBOX_REMOTE_RUNTIME_API_URL="https://runtime.staging.all-hands.dev" poetry run pytest -vvxss tests/runtime/test_stress_remote_runtime.py ``` """ import asyncio import os import tempfile import time from datetime import datetime from unittest.mock import MagicMock import pandas as pd import pytest from conftest import TEST_IN_CI from evaluation.utils.shared import ( EvalException, EvalMetadata, EvalOutput, assert_and_raise, codeact_user_response, make_metadata, prepare_dataset, reset_logger_for_multiprocessing, run_evaluation, ) from openhands.agenthub import Agent from openhands.controller.state.state import State from openhands.core.config import ( AgentConfig, LLMConfig, OpenHandsConfig, SandboxConfig, ) from openhands.core.logger import openhands_logger as logger from openhands.core.main import create_runtime, run_controller from openhands.events.action import ( CmdRunAction, FileEditAction, FileWriteAction, MessageAction, ) from openhands.events.observation import CmdOutputObservation from openhands.events.serialization.event import event_to_dict from openhands.llm import LLM from openhands.runtime.base import Runtime from openhands.utils.async_utils import call_async_from_sync AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = { 'CodeActAgent': codeact_user_response, } def get_config() -> OpenHandsConfig: config = OpenHandsConfig( run_as_openhands=False, runtime=os.environ.get('RUNTIME', 'remote'), sandbox=SandboxConfig( base_container_image='python:3.11-bookworm', enable_auto_lint=True, use_host_network=False, # large enough timeout, since some testcases take very long to run timeout=300, api_key=os.environ.get('ALLHANDS_API_KEY', None), remote_runtime_api_url=os.environ.get( 'SANDBOX_REMOTE_RUNTIME_API_URL', None ), keep_runtime_alive=False, remote_runtime_resource_factor=1, ), # do not mount workspace workspace_base=None, workspace_mount_path=None, ) agent_config = AgentConfig( enable_jupyter=False, enable_browsing=False, enable_llm_editor=False, ) config.set_agent_config(agent_config) return config @pytest.mark.skipif( TEST_IN_CI, reason='This test should only be run locally, not in CI.', ) def test_stress_remote_runtime_eval(n_eval_workers: int = 64): """Mimic evaluation setting to test remote runtime in a multi-processing setting.""" def _initialize_runtime( runtime: Runtime, ): """Initialize the runtime for the agent. This function is called before the runtime is used to run the agent. """ logger.info('-' * 30) logger.info('BEGIN Runtime Initialization Fn') logger.info('-' * 30) obs: CmdOutputObservation action = CmdRunAction(command="""export USER=$(whoami); echo USER=${USER} """) action.set_hard_timeout(600) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) assert_and_raise(obs.exit_code == 0, f'Failed to export USER: {str(obs)}') action = CmdRunAction(command='mkdir -p /dummy_dir') action.set_hard_timeout(600) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) assert_and_raise( obs.exit_code == 0, f'Failed to create /dummy_dir: {str(obs)}', ) with tempfile.TemporaryDirectory() as temp_dir: # Construct the full path for the desired file name within the temporary directory temp_file_path = os.path.join(temp_dir, 'dummy_file') # Write to the file with the desired name within the temporary directory with open(temp_file_path, 'w') as f: f.write('dummy content') # Copy the file to the desired location runtime.copy_to(temp_file_path, '/dummy_dir/') logger.info('-' * 30) logger.info('END Runtime Initialization Fn') logger.info('-' * 30) def _process_instance( instance: pd.Series, metadata: EvalMetadata, reset_logger: bool = True, ) -> EvalOutput: config = get_config() # Setup the logger properly, so you can run multi-processing to parallelize the evaluation if reset_logger: log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir) else: logger.info(f'Starting evaluation for instance {instance.instance_id}.') runtime = create_runtime(config, headless_mode=True) call_async_from_sync(runtime.connect) try: _initialize_runtime(runtime) instruction = 'dummy instruction' agent = Agent.get_cls(metadata.agent_class)( llm=LLM(config=metadata.llm_config), config=config.get_agent_config(metadata.agent_class), ) def next_command(*args, **kwargs): return CmdRunAction(command='ls -lah') agent.step = MagicMock(side_effect=next_command) # Here's how you can run the agent (similar to the `main` function) and get the final task state state: State | None = asyncio.run( run_controller( config=config, initial_user_action=MessageAction(content=instruction), runtime=runtime, fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[ metadata.agent_class ], agent=agent, ) ) # if fatal error, throw EvalError to trigger re-run if ( state.last_error and 'fatal error during agent execution' in state.last_error and 'stuck in a loop' not in state.last_error ): raise EvalException('Fatal error detected: ' + state.last_error) finally: runtime.close() test_result = {} if state is None: raise ValueError('State should not be None.') histories = [event_to_dict(event) for event in state.history] metrics = state.metrics.get() if state.metrics else None # Save the output output = EvalOutput( instance_id=instance.instance_id, instruction=instruction, instance=instance.to_dict(), # SWE Bench specific test_result=test_result, metadata=metadata, history=histories, metrics=metrics, error=state.last_error if state and state.last_error else None, ) return output llm_config = LLMConfig() metadata = make_metadata( llm_config, 'dummy_dataset_descrption', 'CodeActAgent', max_iterations=10, eval_note='dummy_eval_note', eval_output_dir='./dummy_eval_output_dir', details={}, ) # generate 300 random dummy instances dummy_instance = pd.DataFrame( { 'instance_id': [f'dummy_instance_{i}' for i in range(300)], } ) output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') instances = prepare_dataset( dummy_instance, output_file, eval_n_limit=len(dummy_instance) ) run_evaluation(instances, metadata, output_file, n_eval_workers, _process_instance) @pytest.mark.skipif( TEST_IN_CI, reason='This test should only be run locally, not in CI.', ) def test_stress_remote_runtime_long_output_with_soft_and_hard_timeout(): """Stress test for the remote runtime.""" config = get_config() try: runtime = create_runtime(config, headless_mode=True) call_async_from_sync(runtime.connect) _time_for_test = datetime.now().strftime('%Y-%m-%d_%H-%M-%S') # Run a command that generates long output multiple times for i in range(10): start_time = time.time() iteration_stats = { 'iteration': i, 'timestamp': time.time(), } # Check overall system memory usage mem_action = CmdRunAction( 'free -k | grep "Mem:" | awk \'{printf "Total: %8.1f MB, Used: %8.1f MB, Free: %8.1f MB, Available: %8.1f MB\\n", $2/1024, $3/1024, $4/1024, $7/1024}\'' ) mem_obs = runtime.run_action(mem_action) assert mem_obs.exit_code == 0 logger.info( f'System memory usage (iteration {i}): {mem_obs.content.strip()}' ) # Parse memory values from output mem_parts = mem_obs.content.strip().split(',') for part in mem_parts: key, value = part.strip().split(':') iteration_stats[f'memory_{key.lower()}'] = float( value.replace('MB', '').strip() ) # Check top memory-consuming processes mem_action = CmdRunAction( 'ps aux | awk \'{printf "%8.1f MB %s\\n", $6/1024, $0}\' | sort -nr | head -n 5' ) mem_obs = runtime.run_action(mem_action) assert mem_obs.exit_code == 0 _top_processes = [i.strip() for i in mem_obs.content.strip().split('\n')] logger.info( f'Top 5 memory-consuming processes (iteration {i}):\n{"- " + "\n- ".join(_top_processes)}' ) iteration_stats['top_processes'] = _top_processes # Check tmux memory usage (in KB) mem_action = CmdRunAction( 'ps aux | awk \'{printf "%8.1f MB %s\\n", $6/1024, $0}\' | sort -nr | grep "/usr/bin/tmux" | grep -v grep | awk \'{print $1}\'' ) mem_obs = runtime.run_action(mem_action) assert mem_obs.exit_code == 0 logger.info( f'Tmux memory usage (iteration {i}): {mem_obs.content.strip()} KB' ) try: iteration_stats['tmux_memory_mb'] = float(mem_obs.content.strip()) except (ValueError, AttributeError): iteration_stats['tmux_memory_mb'] = None # Check action_execution_server mem mem_action = CmdRunAction( 'ps aux | awk \'{printf "%8.1f MB %s\\n", $6/1024, $0}\' | sort -nr | grep "action_execution_server" | grep "/openhands/poetry" | grep -v grep | awk \'{print $1}\'' ) mem_obs = runtime.run_action(mem_action) assert mem_obs.exit_code == 0 logger.info( f'Action execution server memory usage (iteration {i}): {mem_obs.content.strip()} MB' ) try: iteration_stats['action_server_memory_mb'] = float( mem_obs.content.strip() ) except (ValueError, AttributeError): iteration_stats['action_server_memory_mb'] = None # Test soft timeout action = CmdRunAction( 'read -p "Do you want to continue? [Y/n] " answer; if [[ $answer == "Y" ]]; then echo "Proceeding with operation..."; echo "Operation completed successfully!"; else echo "Operation cancelled."; exit 1; fi' ) obs = runtime.run_action(action) assert 'Do you want to continue?' in obs.content assert obs.exit_code == -1 # Command is still running, waiting for input # Send the confirmation action = CmdRunAction('Y', is_input=True) obs = runtime.run_action(action) assert 'Proceeding with operation...' in obs.content assert 'Operation completed successfully!' in obs.content assert obs.exit_code == 0 assert '[The command completed with exit code 0.]' in obs.metadata.suffix # Test hard timeout w/ long output # Generate long output with 1000 asterisks per line action = CmdRunAction( f'export i={i}; for j in $(seq 1 100); do echo "Line $j - Iteration $i - $(printf \'%1000s\' | tr " " "*")"; sleep 1; done' ) action.set_hard_timeout(2) obs = runtime.run_action(action) # Verify the output assert obs.exit_code == -1 assert f'Line 1 - Iteration {i}' in obs.content # Because hard-timeout is triggered, the terminal will in a weird state # where it will not accept any new commands. obs = runtime.run_action(CmdRunAction('ls')) assert obs.exit_code == -1 assert 'The previous command is still running' in obs.metadata.suffix # We need to send a Ctrl+C to reset the terminal. obs = runtime.run_action(CmdRunAction('C-c', is_input=True)) assert obs.exit_code == 130 # Now make sure the terminal is in a good state obs = runtime.run_action(CmdRunAction('ls')) assert obs.exit_code == 0 duration = time.time() - start_time iteration_stats['duration'] = duration logger.info(f'Completed iteration {i} in {duration:.2f} seconds') finally: runtime.close() @pytest.mark.skipif( TEST_IN_CI, reason='This test should only be run locally, not in CI.', ) def test_stress_runtime_memory_limits(): """Test runtime behavior under resource constraints.""" config = get_config() # For Docker runtime, add resource constraints if config.runtime == 'docker': config.sandbox.docker_runtime_kwargs = { 'cpu_period': 100000, # 100ms 'cpu_quota': 100000, # Can use 100ms out of each 100ms period (1 CPU) 'mem_limit': '4G', # 4 GB of memory 'memswap_limit': '0', # No swap 'mem_swappiness': 0, # Disable swapping 'oom_kill_disable': False, # Enable OOM killer } config.sandbox.runtime_startup_env_vars = { 'RUNTIME_MAX_MEMORY_GB': '3', 'RUNTIME_MEMORY_MONITOR': 'true', } try: runtime = create_runtime(config, headless_mode=True) call_async_from_sync(runtime.connect) # Install stress-ng action = CmdRunAction( command='sudo apt-get update && sudo apt-get install -y stress-ng' ) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) assert obs.exit_code == 0 action = CmdRunAction( command='stress-ng --vm 1 --vm-bytes 6G --timeout 1m --metrics' ) action.set_hard_timeout(120) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) assert 'aborted early, out of system resources' in obs.content assert obs.exit_code == 3 # OOM killed! finally: runtime.close() @pytest.mark.skipif( TEST_IN_CI, reason='This test should only be run locally, not in CI.', ) def test_stress_runtime_memory_limits_with_repeated_file_edit(): """Test runtime behavior under resource constraints with repeated file edits.""" config = get_config() # For Docker runtime, add resource constraints if config.runtime == 'docker': config.sandbox.docker_runtime_kwargs = { 'cpu_period': 100000, # 100ms 'cpu_quota': 100000, # Can use 100ms out of each 100ms period (1 CPU) 'mem_limit': '4G', # 4 GB of memory 'memswap_limit': '0', # No swap 'mem_swappiness': 0, # Disable swapping 'oom_kill_disable': False, # Enable OOM killer } config.sandbox.runtime_startup_env_vars = { 'RUNTIME_MAX_MEMORY_GB': '3', 'RUNTIME_MEMORY_MONITOR': 'true', } try: runtime = create_runtime(config, headless_mode=True) call_async_from_sync(runtime.connect) # Create initial test file with base content test_file = '/tmp/test_file.txt' # base_content = 'content_1\n' * 1000 # Create a reasonably sized file base_content = '' for i in range(1000): base_content += f'content_{i:03d}\n' # Use FileWriteAction to create initial file write_action = FileWriteAction(path=test_file, content=base_content) obs = runtime.run_action(write_action) # Perform repeated file edits for i in range(1000): # Use FileEditAction with str_replace instead of IPythonRunCellAction edit_action = FileEditAction( command='str_replace', path=test_file, old_str=f'content_{i:03d}', new_str=f'-content_{i:03d}', ) obs = runtime.run_action(edit_action) assert f'The file {test_file} has been edited' in obs.content, ( f'Edit failed at iteration {i}' ) logger.info(f'finished iteration {i}') # Verify final file state using FileEditAction view command action = FileEditAction(command='view', path=test_file) obs = runtime.run_action(action) assert '-content_999' in obs.content, 'Final content verification failed' logger.info('Final file content verified successfully') finally: runtime.close()