import copy import json import os import subprocess import tempfile import time from dataclasses import dataclass from functools import partial from typing import Callable import pandas as pd from tqdm import tqdm from evaluation.benchmarks.swe_bench.resource.mapping import ( get_instance_resource_factor, ) from evaluation.benchmarks.swe_bench.run_infer import get_instance_docker_image from evaluation.utils.shared import ( EvalMetadata, EvalOutput, get_default_sandbox_config_for_eval, prepare_dataset, reset_logger_for_multiprocessing, run_evaluation, ) from openhands.core.config import ( LLMConfig, OpenHandsConfig, get_parser, ) from openhands.core.logger import openhands_logger as logger from openhands.core.main import create_runtime from openhands.events.action import CmdRunAction from openhands.events.observation import CmdOutputObservation from openhands.utils.async_utils import call_async_from_sync # TODO: migrate all swe-bench docker to ghcr.io/openhands DOCKER_IMAGE_PREFIX = os.environ.get('EVAL_DOCKER_IMAGE_PREFIX', 'docker.io/xingyaoww/') logger.info(f'Using docker image prefix: {DOCKER_IMAGE_PREFIX}') def process_git_patch(patch): if not isinstance(patch, str): return '' if not patch.strip(): # skip empty patches return '' patch = patch.replace('\r\n', '\n') # There might be some weird characters at the beginning of the patch # due to some OpenHands inference command outputs # FOR EXAMPLE: # git diff --no-color --cached 895f28f9cbed817c00ab68770433170d83132d90 # 0 # diff --git a/django/db/models/sql/.backup.query.py b/django/db/models/sql/.backup.query.py # new file mode 100644 # index 0000000000..fc13db5948 # We "find" the first line that starts with "diff" and then we remove lines before it lines = patch.split('\n') for i, line in enumerate(lines): if line.startswith('diff --git'): patch = '\n'.join(lines[i:]) break patch = patch.rstrip() + '\n' # Make sure the last line ends with a newline return patch def get_config(metadata: EvalMetadata, instance: pd.Series) -> OpenHandsConfig: # We use a different instance image for the each instance of swe-bench eval base_container_image = get_instance_docker_image(instance['instance_id']) logger.info( f'Using instance container image: {base_container_image}. ' f'Please make sure this image exists. ' f'Submit an issue on https://github.com/All-Hands-AI/OpenHands if you run into any issues.' ) sandbox_config = get_default_sandbox_config_for_eval() sandbox_config.base_container_image = base_container_image sandbox_config.remote_runtime_resource_factor = get_instance_resource_factor( dataset_name=metadata.dataset, instance_id=instance['instance_id'], ) config = OpenHandsConfig( run_as_openhands=False, runtime=os.environ.get('RUNTIME', 'docker'), sandbox=sandbox_config, # do not mount workspace workspace_base=None, workspace_mount_path=None, ) return config @dataclass class ConditionalImports: """We instantiate the values in this dataclass differently if we're evaluating SWE-bench or SWE-Gym.""" get_eval_report: Callable APPLY_PATCH_FAIL: str APPLY_PATCH_PASS: str def process_instance( instance: pd.Series, metadata: EvalMetadata, reset_logger: bool = True, log_dir: str | None = None, runtime_failure_count: int = 0, conditional_imports: ConditionalImports | None = None, ) -> EvalOutput: """ Evaluate agent performance on a SWE-bench problem instance. Note that this signature differs from the expected input to `run_evaluation`. Use `functools.partial` to provide optional arguments before passing to the evaluation harness. Args: log_dir (str | None, default=None): Path to directory where log files will be written. Must be provided if `reset_logger` is set. conditional_imports: A dataclass containing values that are imported differently based on whether we're evaluating SWE-bench or SWE-Gym. Raises: AssertionError: if the `reset_logger` flag is set without a provided log directory. AssertionError: if `conditional_imports` is not provided. """ assert conditional_imports is not None, ( 'conditional_imports must be provided to run process_instance using multiprocessing' ) # Setup the logger properly, so you can run multi-processing to parallelize the evaluation if reset_logger: assert log_dir is not None, ( "Can't reset logger without a provided log directory." ) os.makedirs(log_dir, exist_ok=True) reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir) else: logger.info(f'Starting evaluation for instance {instance.instance_id}.') config = get_config(metadata, instance) instance_id = instance.instance_id model_patch = instance['model_patch'] test_spec = instance['test_spec'] logger.info(f'Starting evaluation for instance {instance_id}.') if 'test_result' not in instance.keys(): instance['test_result'] = {} instance['test_result']['report'] = { 'empty_generation': False, 'resolved': False, 'failed_apply_patch': False, 'error_eval': False, 'test_timeout': False, } if model_patch == '': instance['test_result']['report']['empty_generation'] = True return EvalOutput( instance_id=instance_id, test_result=instance['test_result'], metadata=metadata, ) # Increase resource_factor with increasing attempt_id if runtime_failure_count > 0: config.sandbox.remote_runtime_resource_factor = min( config.sandbox.remote_runtime_resource_factor * (2**runtime_failure_count), 8, ) logger.warning( f'This is the {runtime_failure_count + 1}th attempt for instance {instance.instance_id}, setting resource factor to {config.sandbox.remote_runtime_resource_factor}' ) metadata = copy.deepcopy(metadata) metadata.details['runtime_failure_count'] = runtime_failure_count metadata.details['remote_runtime_resource_factor'] = ( config.sandbox.remote_runtime_resource_factor ) try: runtime = create_runtime(config) call_async_from_sync(runtime.connect) # Get patch and save it to /tmp/patch.diff with tempfile.TemporaryDirectory() as temp_dir: # Patch file patch_file_path = os.path.join(temp_dir, 'patch.diff') with open(patch_file_path, 'w') as f: f.write(model_patch) runtime.copy_to(patch_file_path, '/tmp') # Eval script eval_script_path = os.path.join(temp_dir, 'eval.sh') with open(eval_script_path, 'w') as f: f.write(test_spec.eval_script) runtime.copy_to(eval_script_path, '/tmp') # Set +x action = CmdRunAction(command='chmod +x /tmp/eval.sh') action.set_hard_timeout(600) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) assert obs.exit_code == 0 # Apply patch exec_command = ( 'cd /testbed && ' "(git apply -v /tmp/patch.diff && echo 'APPLY_PATCH_PASS' || " "(echo 'Failed to apply patch with git apply, trying with patch command...' && " "(patch --batch --fuzz=5 -p1 -i /tmp/patch.diff && echo 'APPLY_PATCH_PASS' || " "echo 'APPLY_PATCH_FAIL')))" ) action = CmdRunAction(command=exec_command) action.set_hard_timeout(600) obs = runtime.run_action(action) assert isinstance(obs, CmdOutputObservation) apply_patch_output = obs.content assert isinstance(apply_patch_output, str) instance['test_result']['apply_patch_output'] = apply_patch_output if 'APPLY_PATCH_FAIL' in apply_patch_output: logger.info( f'[{instance_id}] {conditional_imports.APPLY_PATCH_FAIL}:\n{apply_patch_output}' ) instance['test_result']['report']['failed_apply_patch'] = True return EvalOutput( instance_id=instance_id, test_result=instance['test_result'], metadata=metadata, ) elif 'APPLY_PATCH_PASS' in apply_patch_output: logger.info( f'[{instance_id}] {conditional_imports.APPLY_PATCH_PASS}:\n{apply_patch_output}' ) # Run eval script in background and save output to log file log_file = '/tmp/eval_output.log' action = CmdRunAction(command=f'/tmp/eval.sh > {log_file} 2>&1 & echo $!') action.set_hard_timeout(300) # Short timeout just to get the process ID obs = runtime.run_action(action) if isinstance(obs, CmdOutputObservation) and obs.exit_code == 0: pid = obs.content.split()[-1].strip() logger.info( f'[{instance_id}] Evaluation process started with PID: {pid}' ) # Poll for completion start_time = time.time() timeout = 1800 # 30 minutes while True: seconds_elapsed = time.time() - start_time if seconds_elapsed > timeout: logger.info( f'[{instance_id}] Evaluation timed out after {timeout} seconds' ) instance['test_result']['report']['test_timeout'] = True break check_action = CmdRunAction( command=f'ps -p {pid} > /dev/null; echo $?' ) check_action.set_hard_timeout(300) check_obs = runtime.run_action(check_action) if ( isinstance(check_obs, CmdOutputObservation) and check_obs.content.split()[-1].strip() == '1' ): logger.info( f'[{instance_id}] Evaluation process completed after {seconds_elapsed} seconds' ) break logger.info( f'[{instance_id}] [{seconds_elapsed:.0f}s] Evaluation still running, waiting...' ) time.sleep(30) # Wait for 30 seconds before checking again # Read the log file cat_action = CmdRunAction(command=f'cat {log_file}') cat_action.set_hard_timeout(300) cat_obs = runtime.run_action(cat_action) # Grade answer if isinstance(cat_obs, CmdOutputObservation) and cat_obs.exit_code == 0: test_output = cat_obs.content assert isinstance(test_output, str) instance['test_result']['test_output'] = test_output # Get report from test output logger.info(f'[{instance_id}] Grading answer...') with tempfile.TemporaryDirectory() as temp_dir: # Create a directory structure that matches the expected format # NOTE: this is a hack to make the eval report format consistent # with the original SWE-Bench eval script log_dir = os.path.join(temp_dir, 'logs', instance_id.lower()) os.makedirs(log_dir, exist_ok=True) test_output_path = os.path.join(log_dir, 'test_output.txt') with open(test_output_path, 'w') as f: f.write(test_output) try: extra_kwargs = {} if 'SWE-Gym' in metadata.dataset: # SWE-Gym uses a different version of the package, hence a different eval report argument extra_kwargs['log_path'] = test_output_path else: extra_kwargs['test_log_path'] = test_output_path _report = conditional_imports.get_eval_report( test_spec=test_spec, prediction={ 'model_patch': model_patch, 'instance_id': instance_id, }, include_tests_status=True, **extra_kwargs, ) report = _report[instance_id] logger.info( f'[{instance_id}] report: {report}\nResult for {instance_id}: resolved: {report["resolved"]}' ) instance['test_result']['report']['resolved'] = report[ 'resolved' ] except Exception as e: logger.error( f'[{instance_id}] Error when getting eval report: {e}' ) instance['test_result']['report']['resolved'] = False instance['test_result']['report']['error_eval'] = True else: logger.info(f'[{instance_id}] Error when starting eval:\n{obs.content}') instance['test_result']['report']['error_eval'] = True return EvalOutput( instance_id=instance_id, test_result=instance['test_result'], metadata=metadata, ) else: logger.info( f'[{instance_id}] Unexpected output when applying patch:\n{apply_patch_output}' ) raise RuntimeError( instance_id, f'Unexpected output when applying patch:\n{apply_patch_output}', logger, ) finally: runtime.close() if __name__ == '__main__': parser = get_parser() parser.add_argument( '--input-file', type=str, help='Path to input predictions file', required=True, ) parser.add_argument( '--dataset', type=str, default='princeton-nlp/SWE-bench', help='data set to evaluate on, either full-test or lite-test', ) parser.add_argument( '--split', type=str, default='test', help='split to evaluate on', ) args, _ = parser.parse_known_args() if 'SWE-Gym' in args.dataset: from swegym.harness.grading import get_eval_report from swegym.harness.run_evaluation import ( APPLY_PATCH_FAIL, APPLY_PATCH_PASS, ) from swegym.harness.test_spec import ( SWEbenchInstance, make_test_spec, ) from swegym.harness.utils import load_swebench_dataset else: # Newer version of SWE-Bench have different import paths from swebench.harness.grading import get_eval_report from swebench.harness.run_evaluation import ( APPLY_PATCH_FAIL, APPLY_PATCH_PASS, ) from swebench.harness.test_spec.test_spec import ( SWEbenchInstance, make_test_spec, ) from swebench.harness.utils import load_swebench_dataset # Load SWE-Bench dataset full_dataset: list[SWEbenchInstance] = load_swebench_dataset( args.dataset, args.split ) instance_id_to_instance = { instance['instance_id']: instance for instance in full_dataset } logger.info( f'Loaded dataset {args.dataset} with split {args.split} to run inference on.' ) # Load predictions assert args.input_file.endswith('.jsonl'), 'Input file must be a jsonl file.' required_fields = ['instance_id', 'model_patch', 'test_result'] with open(args.input_file) as f: predictions = pd.DataFrame.from_records( [ {k: v for k, v in json.loads(line).items() if k in required_fields} for line in tqdm(f, desc='Loading predictions') ] ) assert 'instance_id' in predictions.columns, ( 'Input file must contain instance_id column.' ) if 'model_patch' not in predictions.columns and ( 'test_result' in predictions.columns and 'model_patch' in predictions['test_result'].iloc[0] ): raise ValueError( 'Input file must contain model_patch column OR test_result column with model_patch field.' ) assert len(predictions['instance_id'].unique()) == len(predictions), ( 'instance_id column must be unique.' ) if 'model_patch' not in predictions.columns: predictions['model_patch'] = predictions['test_result'].apply( lambda x: x.get('git_patch', '') ) assert {'instance_id', 'model_patch'}.issubset(set(predictions.columns)), ( 'Input file must contain instance_id and model_patch columns.' ) # Process model_patch predictions['model_patch'] = predictions['model_patch'].apply(process_git_patch) # Merge predictions with dataset predictions['instance'] = predictions['instance_id'].apply( lambda x: instance_id_to_instance[x] ) predictions['test_spec'] = predictions['instance'].apply(make_test_spec) # Prepare dataset output_file = args.input_file.replace('.jsonl', '.swebench_eval.jsonl') instances = prepare_dataset(predictions, output_file, args.eval_n_limit) # If possible, load the relevant metadata to avoid issues with `run_evaluation`. metadata: EvalMetadata | None = None metadata_filepath = os.path.join(os.path.dirname(args.input_file), 'metadata.json') if os.path.exists(metadata_filepath): with open(metadata_filepath, 'r') as metadata_file: data = metadata_file.read() metadata = EvalMetadata.model_validate_json(data) else: # Initialize with a dummy metadata when file doesn't exist metadata = EvalMetadata( agent_class='dummy_agent', # Placeholder agent class llm_config=LLMConfig(model='dummy_model'), # Minimal LLM config max_iterations=1, # Minimal iterations eval_output_dir=os.path.dirname( args.input_file ), # Use input file dir as output dir start_time=time.strftime('%Y-%m-%d %H:%M:%S'), # Current time git_commit=subprocess.check_output(['git', 'rev-parse', 'HEAD']) .decode('utf-8') .strip(), # Current commit dataset=args.dataset, # Dataset name from args details={}, ) # The evaluation harness constrains the signature of `process_instance_func` but we need to # pass extra information. Build a new function object to avoid issues with multiprocessing. process_instance_func = partial( process_instance, log_dir=output_file.replace('.jsonl', '.logs'), # We have to explicitly pass these imports to the process_instance function, otherwise # they won't be available in the multiprocessing context. conditional_imports=ConditionalImports( get_eval_report=get_eval_report, APPLY_PATCH_FAIL=APPLY_PATCH_FAIL, APPLY_PATCH_PASS=APPLY_PATCH_PASS, ), ) run_evaluation( instances, metadata=metadata, output_file=output_file, num_workers=args.eval_num_workers, process_instance_func=process_instance_func, ) # Load evaluated predictions & print number of resolved predictions evaluated_predictions = pd.read_json(output_file, lines=True) fields = ['resolved', 'failed_apply_patch', 'error_eval', 'empty_generation'] def count_report_field(row, field): return row['test_result']['report'][field] report = {} for field in fields: count = evaluated_predictions.apply( count_report_field, args=(field,), axis=1 ).sum() report[field] = count logger.info( f'# {field}: {count} / {len(evaluated_predictions)}. ({count / len(evaluated_predictions):.2%})' )