import asyncio
import json
import os
import tempfile
from typing import Any
import pandas as pd
import toml
from datasets import load_dataset
import openhands.agenthub
from evaluation.benchmarks.swe_bench.resource.mapping import (
get_instance_resource_factor,
)
from evaluation.utils.shared import (
EvalException,
EvalMetadata,
EvalOutput,
assert_and_raise,
codeact_user_response,
get_default_sandbox_config_for_eval,
get_metrics,
is_fatal_evaluation_error,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
update_llm_config_for_completions_logging,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AgentConfig,
OpenHandsConfig,
get_llm_config_arg,
get_parser,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import CmdRunAction, MessageAction
from openhands.events.observation import CmdOutputObservation, ErrorObservation
from openhands.events.serialization.event import event_to_dict
from openhands.runtime.base import Runtime
from openhands.utils.async_utils import call_async_from_sync
from openhands.utils.shutdown_listener import sleep_if_should_continue
USE_HINT_TEXT = os.environ.get('USE_HINT_TEXT', 'false').lower() == 'true'
RUN_WITH_BROWSING = os.environ.get('RUN_WITH_BROWSING', 'false').lower() == 'true'
INDEX_BASE_DIR = os.environ.get('INDEX_BASE_DIR', '')
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response,
'LocAgent': codeact_user_response,
}
def _get_swebench_workspace_dir_name(instance: pd.Series) -> str:
return f'{instance.repo}__{instance.version}'.replace('/', '__')
def get_instruction(instance: pd.Series, metadata: EvalMetadata):
_get_swebench_workspace_dir_name(instance)
instruction = f"""
Consider the following issue description:
{instance.problem_statement}
Your objective is to localize the specific files, classes or functions, and lines of code that need modification or contain key information to resolve the issue.
Follow these steps to localize the issue:
## Step 1: Categorize and Extract Key Problem Information
- Classify the problem statement into the following categories:
Problem description, error trace, code to reproduce the bug, and additional context.
- Identify modules in the "{instance.instance_id.split('_')[0]}" package mentioned in each category.
- Use extracted keywords and line numbers to search for relevant code references for additional context.
## Step 2: Locate Referenced Modules
- Accurately determine specific modules
- Explore the repo to familiarize yourself with its structure.
- Analyze the described execution flow to identify specific modules or components being referenced.
- Pay special attention to distinguishing between modules with similar names using context and described execution flow.
- Output Format for collected relevant modules:
- Use the format: 'file_path:QualifiedName'
- E.g., for a function `calculate_sum` in the `MathUtils` class located in `src/helpers/math_helpers.py`, represent it as: 'src/helpers/math_helpers.py:MathUtils.calculate_sum'.
## Step 3: Analyze and Reproducing the Problem
- Clarify the Purpose of the Issue
- If expanding capabilities: Identify where and how to incorporate new behavior, fields, or modules.
- If addressing unexpected behavior: Focus on localizing modules containing potential bugs.
- Reconstruct the execution flow
- Identify main entry points triggering the issue.
- Trace function calls, class interactions, and sequences of events.
- Identify potential breakpoints causing the issue.
Important: Keep the reconstructed flow focused on the problem, avoiding irrelevant details.
## Step 4: Locate Areas for Modification
- Locate specific files, functions, or lines of code requiring changes or containing critical information for resolving the issue.
- Consider upstream and downstream dependencies that may affect or be affected by the issue.
- If applicable, identify where to introduce new fields, functions, or variables.
- Think Thoroughly: List multiple potential solutions and consider edge cases that could impact the resolution.
## Output Format for Final Results:
Your final output should list the locations requiring modification, wrapped with triple backticks ```
Each location should include the file path, class name (if applicable), function name, or line numbers, ordered by importance.
Your answer would better include about 5 files.
### Examples:
```
full_path1/file1.py
line: 10
class: MyClass1
function: my_function1
full_path2/file2.py
line: 76
function: MyClass2.my_function2
full_path3/file3.py
line: 24
line: 156
function: my_function3
```
Return just the location(s)
Note: Your thinking should be thorough and so it's fine if it's very long.
"""
instruction += (
'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
"Don't include any lambda functions!\n"
'You should NOT modify any files!\n'
)
if RUN_WITH_BROWSING:
instruction += """
You SHOULD NEVER attempt to browse the web.
"""
return instruction
# TODO: migrate all swe-bench docker to ghcr.io/openhands
DEFAULT_DOCKER_IMAGE_PREFIX = os.environ.get(
'EVAL_DOCKER_IMAGE_PREFIX', 'docker.io/xingyaoww/'
)
logger.info(f'Default docker image prefix: {DEFAULT_DOCKER_IMAGE_PREFIX}')
def get_instance_docker_image(instance_id: str, official_image: bool = False) -> str:
if official_image:
# Official SWE-Bench image
# swebench/sweb.eval.x86_64.django_1776_django-11333:v1
docker_image_prefix = 'docker.io/swebench/'
repo, name = instance_id.split('__')
image_name = f'sweb.eval.x86_64.{repo}_1776_{name}:latest'
logger.warning(f'Using official SWE-Bench image: {image_name}')
else:
# OpenHands version of the image
docker_image_prefix = DEFAULT_DOCKER_IMAGE_PREFIX
image_name = 'sweb.eval.x86_64.' + instance_id
image_name = image_name.replace(
'__', '_s_'
) # to comply with docker image naming convention
return (docker_image_prefix.rstrip('/') + '/' + image_name).lower()
def get_config(
instance: pd.Series,
metadata: EvalMetadata,
) -> OpenHandsConfig:
# We use a different instance image for the each instance of swe-bench eval
use_official_image = bool(
'verified' in metadata.dataset.lower() or 'lite' in metadata.dataset.lower()
)
base_container_image = get_instance_docker_image(
instance['instance_id'], use_official_image
)
logger.info(
f'Using instance container image: {base_container_image}. '
f'Please make sure this image exists. '
f'Submit an issue on https://github.com/All-Hands-AI/OpenHands if you run into any issues.'
)
sandbox_config = get_default_sandbox_config_for_eval()
sandbox_config.base_container_image = base_container_image
sandbox_config.enable_auto_lint = True
sandbox_config.use_host_network = False
# Add platform to the sandbox config to solve issue 4401
sandbox_config.platform = 'linux/amd64'
sandbox_config.remote_runtime_resource_factor = get_instance_resource_factor(
dataset_name=metadata.dataset,
instance_id=instance['instance_id'],
)
workspace_dir_name = _get_swebench_workspace_dir_name(instance)
sandbox_config.runtime_startup_env_vars = {
'REPO_PATH': f'/workspace/{workspace_dir_name}/',
}
config = OpenHandsConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
max_iterations=metadata.max_iterations,
runtime=os.environ.get('RUNTIME', 'docker'),
sandbox=sandbox_config,
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(
update_llm_config_for_completions_logging(
metadata.llm_config, metadata.eval_output_dir, instance['instance_id']
)
)
agent_config = AgentConfig(
enable_jupyter=False,
enable_browsing=RUN_WITH_BROWSING,
enable_llm_editor=False,
condenser=metadata.condenser_config,
enable_prompt_extensions=False,
)
config.set_agent_config(agent_config)
return config
def initialize_runtime(
runtime: Runtime,
instance: pd.Series, # this argument is not required
):
"""Initialize the runtime for the agent.
This function is called before the runtime is used to run the agent.
"""
logger.info('-' * 30)
logger.info('BEGIN Runtime Initialization Fn')
logger.info('-' * 30)
workspace_dir_name = _get_swebench_workspace_dir_name(instance)
obs: CmdOutputObservation
# Set instance id
action = CmdRunAction(
command=f"""echo 'export SWE_INSTANCE_ID={instance['instance_id']}' >> ~/.bashrc && echo 'export PIP_CACHE_DIR=~/.cache/pip' >> ~/.bashrc && echo "alias git='git --no-pager'" >> ~/.bashrc"""
)
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0, f'Failed to export SWE_INSTANCE_ID: {str(obs)}'
)
action = CmdRunAction(command="""export USER=$(whoami); echo USER=${USER} """)
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(obs.exit_code == 0, f'Failed to export USER: {str(obs)}')
# inject the init script
script_dir = os.path.dirname(__file__)
# inject the instance info
action = CmdRunAction(command='mkdir -p /swe_util/eval_data/instances')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0,
f'Failed to create /swe_util/eval_data/instances: {str(obs)}',
)
swe_instance_json_name = 'swe-bench-instance.json'
with tempfile.TemporaryDirectory() as temp_dir:
# Construct the full path for the desired file name within the temporary directory
temp_file_path = os.path.join(temp_dir, swe_instance_json_name)
# Write to the file with the desired name within the temporary directory
with open(temp_file_path, 'w') as f:
if not isinstance(instance, dict):
json.dump([instance.to_dict()], f)
else:
json.dump([instance], f)
# Copy the file to the desired location
runtime.copy_to(temp_file_path, '/swe_util/eval_data/instances/')
# inject the instance swe entry
runtime.copy_to(
str(os.path.join(script_dir, 'scripts/setup/instance_swe_entry.sh')),
'/swe_util/',
)
action = CmdRunAction(command='cat ~/.bashrc')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(obs.exit_code == 0, f'Failed to cat ~/.bashrc: {str(obs)}')
action = CmdRunAction(command='source ~/.bashrc')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
if isinstance(obs, ErrorObservation):
logger.error(f'Failed to source ~/.bashrc: {str(obs)}')
assert_and_raise(obs.exit_code == 0, f'Failed to source ~/.bashrc: {str(obs)}')
action = CmdRunAction(command='source /swe_util/instance_swe_entry.sh')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0,
f'Failed to source /swe_util/instance_swe_entry.sh: {str(obs)}',
)
action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0,
f'Failed to cd to /workspace/{workspace_dir_name}: {str(obs)}',
)
action = CmdRunAction(command='git reset --hard')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(obs.exit_code == 0, f'Failed to git reset --hard: {str(obs)}')
action = CmdRunAction(
command='for remote_name in $(git remote); do git remote remove "${remote_name}"; done'
)
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(obs.exit_code == 0, f'Failed to remove git remotes: {str(obs)}')
# Copy the processed indexes if available
action = CmdRunAction(command='mkdir _index_data/graph_index_v2.3')
obs = runtime.run_action(action)
# Check if an existing graph index file is available
graph_index_file_path = os.path.join(
INDEX_BASE_DIR, 'graph_index_v2.3', f'{instance["instance_id"]}.pkl'
)
if INDEX_BASE_DIR and os.path.exists(graph_index_file_path):
logger.info(
f'Copying graph index from {graph_index_file_path} to /workspace/{workspace_dir_name}/_index_data/graph_index_v2.3'
)
runtime.copy_to(
graph_index_file_path,
f'/workspace/{workspace_dir_name}/_index_data/graph_index_v2.3',
)
action = CmdRunAction(
command=f'mv _index_data/graph_index_v2.3/{instance["instance_id"]}.pkl _index_data/graph_index_v2.3/code_graph.pkl'
)
obs = runtime.run_action(action)
bm25_index_dir = os.path.join(
INDEX_BASE_DIR, 'BM25_index', instance['instance_id']
)
runtime.copy_to(
bm25_index_dir,
f'/workspace/{workspace_dir_name}/_index_data',
recursive=True,
)
action = CmdRunAction(
command=f'mv _index_data/{instance["instance_id"]} _index_data/bm25_index'
)
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(obs.exit_code == 0, f'Failed to mv file: {str(obs)}')
action = CmdRunAction(command='which python')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0 and 'testbed' in obs.content,
f'Expected to find python interpreter from testbed, but got: {str(obs)}',
)
logger.info('-' * 30)
logger.info('END Runtime Initialization Fn')
logger.info('-' * 30)
def complete_runtime(
runtime: Runtime,
instance: pd.Series, # this argument is not required, but it is used to get the workspace_dir_name
) -> dict[str, Any]:
"""Complete the runtime for the agent.
This function is called before the runtime is used to run the agent.
If you need to do something in the sandbox to get the correctness metric after
the agent has run, modify this function.
"""
logger.info('-' * 30)
logger.info('BEGIN Runtime Completion Fn')
logger.info('-' * 30)
obs: CmdOutputObservation
workspace_dir_name = _get_swebench_workspace_dir_name(instance)
action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
if obs.exit_code == -1:
# The previous command is still running
# We need to kill previous command
logger.info('The previous command is still running, trying to kill it...')
action = CmdRunAction(command='C-c')
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
# Then run the command again
action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
f'Failed to cd to /workspace/{workspace_dir_name}: {str(obs)}',
)
action = CmdRunAction(command='git config --global core.pager ""')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
f'Failed to git config --global core.pager "": {str(obs)}',
)
# First check for any git repositories in subdirectories
action = CmdRunAction(command='find . -type d -name .git -not -path "./.git"')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
f'Failed to find git repositories: {str(obs)}',
)
git_dirs = [p for p in obs.content.strip().split('\n') if p]
if git_dirs:
# Remove all .git directories in subdirectories
for git_dir in git_dirs:
action = CmdRunAction(command=f'rm -rf "{git_dir}"')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
f'Failed to remove git directory {git_dir}: {str(obs)}',
)
# add all files
action = CmdRunAction(command='git add -A')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
f'Failed to git add -A: {str(obs)}',
)
n_retries = 0
git_patch = None
while n_retries < 5:
action = CmdRunAction(
command=f'git diff --no-color --cached {instance["base_commit"]}'
)
action.set_hard_timeout(max(300 + 100 * n_retries, 600))
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
n_retries += 1
if isinstance(obs, CmdOutputObservation):
if obs.exit_code == 0:
git_patch = obs.content.strip()
break
else:
logger.info('Failed to get git diff, retrying...')
sleep_if_should_continue(10)
elif isinstance(obs, ErrorObservation):
logger.error(f'Error occurred: {obs.content}. Retrying...')
sleep_if_should_continue(10)
else:
assert_and_raise(False, f'Unexpected observation type: {str(obs)}')
assert_and_raise(git_patch is not None, 'Failed to get git diff (None)')
logger.info('-' * 30)
logger.info('END Runtime Completion Fn')
logger.info('-' * 30)
return {'git_patch': git_patch}
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
runtime_failure_count: int = 0,
) -> EvalOutput:
config = get_config(instance, metadata)
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance.instance_id}.')
# Increase resource_factor with increasing attempt_id
if runtime_failure_count > 0:
config.sandbox.remote_runtime_resource_factor = min(
config.sandbox.remote_runtime_resource_factor * (2**runtime_failure_count),
8,
)
logger.warning(
f'This is the {runtime_failure_count + 1}th attempt for instance {instance.instance_id}, setting resource factor to {config.sandbox.remote_runtime_resource_factor}'
)
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
try:
initialize_runtime(runtime, instance)
instruction = get_instruction(instance, metadata)
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=MessageAction(content=instruction),
runtime=runtime,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
metadata.agent_class
],
)
)
# if fatal error, throw EvalError to trigger re-run
if is_fatal_evaluation_error(state.last_error):
raise EvalException('Fatal error detected: ' + state.last_error)
# ======= THIS IS SWE-Bench specific =======
# Get git patch
return_val = complete_runtime(runtime, instance)
git_patch = return_val['git_patch']
logger.info(
f'Got git diff for instance {instance.instance_id}:\n--------\n{git_patch}\n--------'
)
finally:
runtime.close()
# ==========================================
# ======= Attempt to evaluate the agent's edits =======
# we use eval_infer.sh to evaluate the agent's edits, not here
# because the agent may alter the environment / testcases
test_result = {
'git_patch': git_patch,
}
# If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
if state is None:
raise ValueError('State should not be None.')
# NOTE: this is NO LONGER the event stream, but an agent history that includes delegate agent's events
histories = [event_to_dict(event) for event in state.history]
metrics = get_metrics(state)
# Save the output
output = EvalOutput(
instance_id=instance.instance_id,
instruction=instruction,
instance=instance.to_dict(), # SWE Bench specific
test_result=test_result,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
)
return output
def filter_dataset(dataset: pd.DataFrame, filter_column: str) -> pd.DataFrame:
file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'config.toml')
if os.path.exists(file_path):
with open(file_path, 'r') as file:
data = toml.load(file)
if 'selected_ids' in data:
selected_ids = data['selected_ids']
logger.info(
f'Filtering {len(selected_ids)} tasks from "selected_ids"...'
)
subset = dataset[dataset[filter_column].isin(selected_ids)]
logger.info(f'Retained {subset.shape[0]} tasks after filtering')
return subset
skip_ids = os.environ.get('SKIP_IDS', '').split(',')
if len(skip_ids) > 0:
logger.info(f'Filtering {len(skip_ids)} tasks from "SKIP_IDS"...')
return dataset[~dataset[filter_column].isin(skip_ids)]
return dataset
# A list of instances that are known to be tricky to infer
# (will cause runtime failure even with resource factor = 8)
SWEGYM_EXCLUDE_IDS = [
'dask__dask-10422',
'pandas-dev__pandas-50548',
'pandas-dev__pandas-53672',
'pandas-dev__pandas-54174',
'pandas-dev__pandas-55518',
'pandas-dev__pandas-58383',
'pydata__xarray-6721',
'pytest-dev__pytest-10081',
'pytest-dev__pytest-7236',
]
if __name__ == '__main__':
parser = get_parser()
parser.add_argument(
'--dataset',
type=str,
default='princeton-nlp/SWE-bench',
help='data set to evaluate on, either full-test or lite-test',
)
parser.add_argument(
'--split',
type=str,
default='test',
help='split to evaluate on',
)
args, _ = parser.parse_known_args()
# NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing
# so we don't need to manage file uploading to OpenHands's repo
dataset = load_dataset(args.dataset, split=args.split)
swe_bench_tests = filter_dataset(dataset.to_pandas(), 'instance_id')
logger.info(
f'Loaded dataset {args.dataset} with split {args.split}: {len(swe_bench_tests)} tasks'
)
if 'SWE-Gym' in args.dataset:
swe_bench_tests = swe_bench_tests[
~swe_bench_tests['instance_id'].isin(SWEGYM_EXCLUDE_IDS)
]
logger.info(
f'{len(swe_bench_tests)} tasks left after excluding SWE-Gym excluded tasks'
)
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
llm_config.log_completions = True
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
llm_config.modify_params = False
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
details = {}
_agent_cls = openhands.agenthub.Agent.get_cls(args.agent_cls)
dataset_descrption = (
args.dataset.replace('/', '__') + '-' + args.split.replace('/', '__')
)
metadata = make_metadata(
llm_config,
dataset_descrption,
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
details=details,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
print(f'### OUTPUT FILE: {output_file} ###')
instances = prepare_dataset(swe_bench_tests, output_file, args.eval_n_limit)
if len(instances) > 0 and not isinstance(
instances['PASS_TO_PASS'][instances['PASS_TO_PASS'].index[0]], str
):
for col in ['PASS_TO_PASS', 'FAIL_TO_PASS']:
instances[col] = instances[col].apply(lambda x: str(x))
run_evaluation(
instances,
metadata,
output_file,
args.eval_num_workers,
process_instance,
timeout_seconds=8 * 60 * 60, # 8 hour PER instance should be more than enough
max_retries=5,
)