from __future__ import annotations from openhands.core.config.condenser_config import LLMSummarizingCondenserConfig from openhands.core.message import Message, TextContent from openhands.events.action.agent import CondensationAction from openhands.events.observation.agent import AgentCondensationObservation from openhands.events.serialization.event import truncate_content from openhands.llm import LLM from openhands.memory.condenser.condenser import ( Condensation, RollingCondenser, View, ) class LLMSummarizingCondenser(RollingCondenser): """A condenser that summarizes forgotten events. Maintains a condensed history and forgets old events when it grows too large, keeping a special summarization event after the prefix that summarizes all previous summarizations and newly forgotten events. """ def __init__( self, llm: LLM, max_size: int = 100, keep_first: int = 1, max_event_length: int = 10_000, ): if keep_first >= max_size // 2: raise ValueError( f'keep_first ({keep_first}) must be less than half of max_size ({max_size})' ) if keep_first < 0: raise ValueError(f'keep_first ({keep_first}) cannot be negative') if max_size < 1: raise ValueError(f'max_size ({max_size}) cannot be non-positive') self.max_size = max_size self.keep_first = keep_first self.max_event_length = max_event_length self.llm = llm super().__init__() def _truncate(self, content: str) -> str: """Truncate the content to fit within the specified maximum event length.""" return truncate_content(content, max_chars=self.max_event_length) def get_condensation(self, view: View) -> Condensation: head = view[: self.keep_first] target_size = self.max_size // 2 # Number of events to keep from the tail -- target size, minus however many # prefix events from the head, minus one for the summarization event events_from_tail = target_size - len(head) - 1 summary_event = ( view[self.keep_first] if isinstance(view[self.keep_first], AgentCondensationObservation) else AgentCondensationObservation('No events summarized') ) # Identify events to be forgotten (those not in head or tail) forgotten_events = [] for event in view[self.keep_first : -events_from_tail]: if not isinstance(event, AgentCondensationObservation): forgotten_events.append(event) # Construct prompt for summarization prompt = """You are maintaining a context-aware state summary for an interactive agent. You will be given a list of events corresponding to actions taken by the agent, and the most recent previous summary if one exists. Track: USER_CONTEXT: (Preserve essential user requirements, goals, and clarifications in concise form) COMPLETED: (Tasks completed so far, with brief results) PENDING: (Tasks that still need to be done) CURRENT_STATE: (Current variables, data structures, or relevant state) For code-specific tasks, also include: CODE_STATE: {File paths, function signatures, data structures} TESTS: {Failing cases, error messages, outputs} CHANGES: {Code edits, variable updates} DEPS: {Dependencies, imports, external calls} VERSION_CONTROL_STATUS: {Repository state, current branch, PR status, commit history} PRIORITIZE: 1. Adapt tracking format to match the actual task type 2. Capture key user requirements and goals 3. Distinguish between completed and pending tasks 4. Keep all sections concise and relevant SKIP: Tracking irrelevant details for the current task type Example formats: For code tasks: USER_CONTEXT: Fix FITS card float representation issue COMPLETED: Modified mod_float() in card.py, all tests passing PENDING: Create PR, update documentation CODE_STATE: mod_float() in card.py updated TESTS: test_format() passed CHANGES: str(val) replaces f"{val:.16G}" DEPS: None modified VERSION_CONTROL_STATUS: Branch: fix-float-precision, Latest commit: a1b2c3d For other tasks: USER_CONTEXT: Write 20 haikus based on coin flip results COMPLETED: 15 haikus written for results [T,H,T,H,T,H,T,T,H,T,H,T,H,T,H] PENDING: 5 more haikus needed CURRENT_STATE: Last flip: Heads, Haiku count: 15/20""" prompt += '\n\n' # Add the previous summary if it exists. We'll always have a summary # event, but the types aren't precise enought to guarantee that it has a # message attribute. summary_event_content = self._truncate( summary_event.message if summary_event.message else '' ) prompt += f'\n{summary_event_content}\n\n' prompt += '\n\n' # Add all events that are being forgotten. We use the string # representation defined by the event, and truncate it if necessary. for forgotten_event in forgotten_events: event_content = self._truncate(str(forgotten_event)) prompt += f'\n{event_content}\n\n' prompt += 'Now summarize the events using the rules above.' messages = [Message(role='user', content=[TextContent(text=prompt)])] response = self.llm.completion( messages=self.llm.format_messages_for_llm(messages), extra_body={'metadata': self._llm_metadata}, ) summary = response.choices[0].message.content self.add_metadata('response', response.model_dump()) self.add_metadata('metrics', self.llm.metrics.get()) return Condensation( action=CondensationAction( forgotten_events_start_id=min(event.id for event in forgotten_events), forgotten_events_end_id=max(event.id for event in forgotten_events), summary=summary, summary_offset=self.keep_first, ) ) def should_condense(self, view: View) -> bool: return len(view) > self.max_size @classmethod def from_config( cls, config: LLMSummarizingCondenserConfig ) -> LLMSummarizingCondenser: # This condenser cannot take advantage of prompt caching. If it happens # to be set, we'll pay for the cache writes but never get a chance to # save on a read. llm_config = config.llm_config.model_copy() llm_config.caching_prompt = False return LLMSummarizingCondenser( llm=LLM(config=llm_config), max_size=config.max_size, keep_first=config.keep_first, max_event_length=config.max_event_length, ) LLMSummarizingCondenser.register_config(LLMSummarizingCondenserConfig)