#!/usr/bin/env python3 import argparse import pandas as pd parser = argparse.ArgumentParser( description='Compare two TestGenEval output JSONL files and print the resolved diff' ) parser.add_argument('input_file_1', type=str) parser.add_argument('input_file_2', type=str) args = parser.parse_args() df1 = pd.read_json(args.input_file_1, orient='records', lines=True) df2 = pd.read_json(args.input_file_2, orient='records', lines=True) # Get the intersection of the ids df = pd.merge(df1, df2, on='id', how='inner') def _get_coverage(report): if report is None: return False if isinstance(report, float): return False else: return report.get('test_pass', False) df['test_pass_x'] = df['test_pass_x'].apply(_get_coverage) df['test_pass_y'] = df['test_pass_y'].apply(_get_coverage) df['diff'] = df.apply(lambda x: x['test_pass_x'] != x['test_pass_y'], axis=1) df_diff = df[df['diff']].sort_values( by=['test_pass_x', 'test_pass_y'], ascending=[False, False] ) # skip if any of the pass is nan, which means one of the eval is not finished yet df_diff = df_diff[df_diff['test_pass_x'].notna() & df_diff['test_pass_y'].notna()] print(f'X={args.input_file_1}') print(f'Y={args.input_file_2}') print(f'# diff={df_diff.shape[0]}') df_diff = df_diff[['id', 'test_pass_x', 'test_pass_y', 'report_x', 'report_y']] # x pass but y not print('-' * 100) df_diff_x_only = df_diff[df_diff['test_pass_x'] & ~df_diff['test_pass_y']].sort_values( by='id' ) print(f'# x pass but y not={df_diff_x_only.shape[0]}') print(df_diff_x_only[['id', 'report_x', 'report_y']]) # y pass but x not print('-' * 100) df_diff_y_only = df_diff[~df_diff['test_pass_x'] & df_diff['test_pass_y']].sort_values( by='id' ) print(f'# y pass but x not={df_diff_y_only.shape[0]}') print(df_diff_y_only[['id', 'report_x', 'report_y']]) # get instance_id from df_diff_y_only print('-' * 100) print('Instances that x pass but y not:') print(df_diff_x_only['id'].tolist()) print('-' * 100) print('Instances that y pass but x not:') print(df_diff_y_only['id'].tolist())