gradio-text-to-speech-app / test_infer_single.py
BadriNarayanan's picture
initial commit
9fc8907
raw
history blame
5.4 kB
import os
import re
import torch
import torchaudio
from einops import rearrange
from vocos import Vocos
from model import CFM, UNetT, DiT, MMDiT
from model.utils import (
load_checkpoint,
get_tokenizer,
convert_char_to_pinyin,
save_spectrogram,
)
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
# --------------------- Dataset Settings -------------------- #
target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
target_rms = 0.1
tokenizer = "pinyin"
dataset_name = "Emilia_ZH_EN"
# ---------------------- infer setting ---------------------- #
seed = None # int | None
exp_name = "F5TTS_Base" # F5TTS_Base | E2TTS_Base
ckpt_step = 1200000
nfe_step = 32 # 16, 32
cfg_strength = 2.
ode_method = 'euler' # euler | midpoint
sway_sampling_coef = -1.
speed = 0.8
fix_duration = 27 # None (will linear estimate. if code-switched, consider fix) | float (total in seconds, include ref audio)
if exp_name == "F5TTS_Base":
model_cls = DiT
model_cfg = dict(dim = 1024, depth = 22, heads = 16, ff_mult = 2, text_dim = 512, conv_layers = 4)
elif exp_name == "E2TTS_Base":
model_cls = UNetT
model_cfg = dict(dim = 1024, depth = 24, heads = 16, ff_mult = 4)
ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.pt"
output_dir = "tests"
ref_audio = "tests/ref_audio/rashmika_input.wav"
ref_text = ""
# gen_text = "Hi everyone! This is Rashmika Mandanna, sending you my heartfelt Diwali wishes on behalf of Antriksh AI. May this festival of lights fill your life with love, joy, and togetherness. Let’s celebrate the spirit of Diwali by spreading happiness and peace wherever we go. At Antriksh AI, we’re excited to blend innovation with creativity, and this Diwali, we wish you endless light and positivity. Enjoy the festivities and cherish every moment! With love, Rashmika Mandanna & Antriksh AI"
gen_text_ = "Happy Birthday, Dhillip Kumar. Virat Kohli this side, all the best for your future endeavours! "
# ref_audio = "tests/ref_audio/test_zh_1_ref_short.wav"
# ref_text = "对,这就是我,万人敬仰的太乙真人。"
# gen_text = "突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:\"我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?\""
# -------------------------------------------------#
use_ema = True
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Vocoder model
local = False
if local:
vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", map_location=device)
vocos.load_state_dict(state_dict)
vocos.eval()
else:
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
# Tokenizer
vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
# Model
model = CFM(
transformer = model_cls(
**model_cfg,
text_num_embeds = vocab_size,
mel_dim = n_mel_channels
),
mel_spec_kwargs = dict(
target_sample_rate = target_sample_rate,
n_mel_channels = n_mel_channels,
hop_length = hop_length,
),
odeint_kwargs = dict(
method = ode_method,
),
vocab_char_map = vocab_char_map,
).to(device)
model = load_checkpoint(model, ckpt_path, device, use_ema = use_ema)
# Audio
audio, sr = torchaudio.load(ref_audio)
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True)
rms = torch.sqrt(torch.mean(torch.square(audio)))
if rms < target_rms:
audio = audio * target_rms / rms
if sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
audio = resampler(audio)
audio = audio.to(device)
# Text
text_list = [ref_text + gen_text]
if tokenizer == "pinyin":
final_text_list = convert_char_to_pinyin(text_list)
else:
final_text_list = [text_list]
print(f"text : {text_list}")
print(f"pinyin: {final_text_list}")
# Duration
ref_audio_len = audio.shape[-1] // hop_length
if fix_duration is not None:
duration = int(fix_duration * target_sample_rate / hop_length)
else: # simple linear scale calcul
zh_pause_punc = r"。,、;:?!"
ref_text_len = len(ref_text) + len(re.findall(zh_pause_punc, ref_text))
gen_text_len = len(gen_text) + len(re.findall(zh_pause_punc, gen_text))
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
# Inference
with torch.inference_mode():
generated, trajectory = model.sample(
cond = audio,
text = final_text_list,
duration = duration,
steps = nfe_step,
cfg_strength = cfg_strength,
sway_sampling_coef = sway_sampling_coef,
seed = seed,
)
print(f"Generated mel: {generated.shape}")
# Final result
generated = generated[:, ref_audio_len:, :]
generated_mel_spec = rearrange(generated, '1 n d -> 1 d n')
generated_wave = vocos.decode(generated_mel_spec.cpu())
if rms < target_rms:
generated_wave = generated_wave * rms / target_rms
save_spectrogram(generated_mel_spec[0].cpu().numpy(), f"{output_dir}/test_single_dbday.png")
torchaudio.save(f"{output_dir}/test_single_dbday.wav", generated_wave, target_sample_rate)
print(f"Generated wav: {generated_wave.shape}")