# Gradio Application for Voice Cloning # Version as of 21/10/2024 import gradio as gr import torch import torchaudio import tempfile from vocos import Vocos from pydub import AudioSegment, silence from model import CFM, UNetT from cached_path import cached_path from model.utils import ( load_checkpoint, get_tokenizer, save_spectrogram, ) from transformers import pipeline import soundfile as sf device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using {device} device") pipe = pipeline( "automatic-speech-recognition", model="openai/whisper-large-v3", torch_dtype=torch.float16, device=device, ) vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz") # Settings target_sample_rate = 24000 n_mel_channels = 100 hop_length = 256 target_rms = 0.1 nfe_step = 32 cfg_strength = 2.0 ode_method = "euler" sway_sampling_coef = -1.0 speed = 1.0 def load_model(): model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4) ckpt_path = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors")) vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin") model = CFM( transformer=UNetT( **model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels ), mel_spec_kwargs=dict( target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length, ), odeint_kwargs=dict( method=ode_method, ), vocab_char_map=vocab_char_map, ).to(device) model = load_checkpoint(model, ckpt_path, device, use_ema=True) return model model = load_model() # Inferencing Logic def infer(ref_audio, ref_text, gen_text, remove_silence, progress=gr.Progress()): progress(0, desc="Processing audio...") with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: aseg = AudioSegment.from_file(ref_audio) non_silent_segs = silence.split_on_silence( aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=1000 ) non_silent_wave = AudioSegment.silent(duration=0) for non_silent_seg in non_silent_segs: non_silent_wave += non_silent_seg aseg = non_silent_wave audio_duration = len(aseg) if audio_duration > 15000: gr.Warning("Audio is over 15s, clipping to only first 15s.") aseg = aseg[:15000] aseg.export(f.name, format="wav") ref_audio = f.name progress(20, desc="Transcribing audio...") if not ref_text.strip(): ref_text = pipe( ref_audio, chunk_length_s=30, batch_size=128, generate_kwargs={"task": "transcribe"}, return_timestamps=False, )["text"].strip() if not ref_text.endswith(". "): ref_text += ". " if not ref_text.endswith(".") else " " progress(40, desc="Generating audio...") audio, sr = torchaudio.load(ref_audio) if audio.shape[0] > 1: audio = torch.mean(audio, dim=0, keepdim=True) rms = torch.sqrt(torch.mean(torch.square(audio))) if rms < target_rms: audio = audio * target_rms / rms if sr != target_sample_rate: resampler = torchaudio.transforms.Resample(sr, target_sample_rate) audio = resampler(audio) audio = audio.to(device) text_list = [ref_text + gen_text] duration = audio.shape[-1] // hop_length + int(audio.shape[-1] / hop_length / len(ref_text) * len(gen_text) / speed) progress(60, desc="Synthesizing speech...") with torch.inference_mode(): generated, _ = model.sample( cond=audio, text=text_list, duration=duration, steps=nfe_step, cfg_strength=cfg_strength, sway_sampling_coef=sway_sampling_coef, ) generated = generated.to(torch.float32) generated = generated[:, audio.shape[-1] // hop_length:, :] generated_mel_spec = generated.permute(0, 2, 1) generated_wave = vocos.decode(generated_mel_spec.cpu()) if rms < target_rms: generated_wave = generated_wave * rms / target_rms generated_wave = generated_wave.squeeze().cpu().numpy() progress(80, desc="Post-processing...") if remove_silence: with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: sf.write(f.name, generated_wave, target_sample_rate) aseg = AudioSegment.from_file(f.name) non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500) non_silent_wave = AudioSegment.silent(duration=0) for non_silent_seg in non_silent_segs: non_silent_wave += non_silent_seg aseg = non_silent_wave aseg.export(f.name, format="wav") generated_wave, _ = torchaudio.load(f.name) generated_wave = generated_wave.squeeze().cpu().numpy() progress(90, desc="Generating spectrogram...") with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram: spectrogram_path = tmp_spectrogram.name save_spectrogram(generated_mel_spec[0].cpu().numpy(), spectrogram_path) progress(100, desc="Done!") return (target_sample_rate, generated_wave), spectrogram_path custom_css = """ /* Dark theme customization */ :root { --background-fill-primary: #1a1a1a !important; --background-fill-secondary: #2d2d2d !important; --border-color-primary: #404040 !important; --text-color: #ffffff !important; --body-text-color: #ffffff !important; --color-accent-soft: #3d4c7d !important; } body { background-color: #1a1a1a !important; color: #ffffff !important; } .gradio-container { background-color: #1a1a1a !important; } .tabs { background-color: #2d2d2d !important; } .tab-selected { background-color: #404040 !important; } #logo-column { display: flex; justify-content: flex-end; align-items: flex-start; background-color: transparent !important; } #logo-column img { max-width: 180px; height: auto; margin-top: 10px; filter: brightness(0.9); } .gr-box { background-color: #2d2d2d !important; border: 1px solid #404040 !important; } .gr-button { background-color: #3d4c7d !important; color: white !important; } .gr-button:hover { background-color: #4a5d99 !important; } /* Modified input styling for darker background */ .gr-input, .gr-textarea { background-color: #1a1a1a !important; color: white !important; border: 1px solid #404040 !important; } #step-2-input textarea { background-color: #ffffff !important; color: #000000 !important; border-color: #404040 !important; } #step-2-input textarea:focus { border-color: #3d4c7d !important; box-shadow: 0 0 0 2px rgba(61, 76, 125, 0.2) !important; } #reference-text-input textarea { background-color: #fffff !important; color: #000000!important; border-color: #404040 !important; } #reference-text-input textarea:focus { border-color: #3d4c7d !important; box-shadow: 0 0 0 2px rgba(61, 76, 125, 0.2) !important; } .gr-accordion { background-color: #2d2d2d !important; } .gr-form { background-color: transparent !important; } .markdown-text { color: #ffffff !important; } .markdown-text h1, .markdown-text h2, .markdown-text h3 { color: #ffffff !important; } .audio-player { background-color: #2d2d2d !important; border: 1px solid #404040 !important; } """ custom_theme = gr.themes.Soft( primary_hue="indigo", secondary_hue="slate", neutral_hue="slate", font=gr.themes.GoogleFont("Inter"), ).set( body_background_fill="#1a1a1a", body_background_fill_dark="#1a1a1a", body_text_color="#ffffff", body_text_color_dark="#ffffff", background_fill_primary="#2d2d2d", background_fill_primary_dark="#2d2d2d", background_fill_secondary="#1a1a1a", background_fill_secondary_dark="#1a1a1a", border_color_primary="#404040", border_color_primary_dark="#404040", button_primary_background_fill="#3d4c7d", button_primary_background_fill_dark="#3d4c7d", button_primary_text_color="#ffffff", button_primary_text_color_dark="#ffffff", ) with gr.Blocks(theme=custom_theme, css=custom_css) as app: with gr.Row(): with gr.Column(scale=9): gr.Markdown( """ # Antriksh AI Welcome to our voice cloning application! Follow these steps to create your own custom voice: 1. Upload a short audio clip (less than 15 seconds) of the voice you want to clone. 2. Enter the text you want to generate in the new voice. 3. Click "Synthesize" and listen to hear the magic! It's that easy! Let's get started. """ ) with gr.Column(scale=1, elem_id="logo-column"): gr.Image("logo/logo.jpg", label="", show_label=False) with gr.Row(): with gr.Column(scale=1): ref_audio_input = gr.Audio( label="Step 1: Upload Reference Audio", type="filepath", elem_classes="audio-player" ) gen_text_input = gr.Textbox( label="Step 2: Enter Text to Generate", lines=5, elem_id="step-2-input", elem_classes="gr-textarea" ) generate_btn = gr.Button( "Step 3: Synthesize", variant="primary", elem_classes="gr-button" ) with gr.Column(scale=1): audio_output = gr.Audio( label="Generated Audio", elem_classes="audio-player" ) spectrogram_output = gr.Image(label="Spectrogram") with gr.TabItem("Advanced Settings"): gr.Markdown( "These settings are optional. If you're not sure, leave them as they are." ) ref_text_input = gr.Textbox( label="Reference Text (Optional)", info="Leave blank for automatic transcription.", lines=2, elem_id="reference-text-input", elem_classes="gr-textarea" ) remove_silence = gr.Checkbox( label="Remove Silences", info="This can improve the quality of longer audio clips.", value=True ) generate_btn.click( infer, inputs=[ ref_audio_input, ref_text_input, gen_text_input, remove_silence, ], outputs=[audio_output, spectrogram_output], ) with gr.TabItem("How It Works"): gr.Markdown( """ # How Voice Cloning Works Our voice cloning system uses advanced AI technology to create a synthetic voice that sounds like the reference audio you provide. Here's a simplified explanation of the process: 1. **Audio Analysis**: When you upload a reference audio clip, our system analyzes its unique characteristics, including pitch, tone, and speech patterns. 2. **Text Processing**: The text you want to generate is processed and converted into a format that our AI model can understand. 3. **Voice Synthesis**: Our AI model, based on the E2-TTS (Embarrassingly Easy Text-to-Speech) architecture, combines the characteristics of the reference audio with the new text to generate a synthetic voice. 4. **Audio Generation**: The synthetic voice is converted into an audio waveform, which you can then play back or download. 5. **Spectrogram Creation**: A visual representation of the audio (spectrogram) is generated, showing the frequency content of the sound over time. This process allows you to generate new speech in the voice of the reference audio, even saying things that weren't in the original recording. It's a powerful tool for creating custom voiceovers, audiobooks, or just for fun! Remember, the quality of the output depends on the quality and length of the input audio. For best results, use a clear, high-quality audio clip of 10-15 seconds in length. """ ) <<<<<<< HEAD ======= # Text input for the prompt gen_text_input_emotional = gr.Textbox(label="Text to Generate", lines=10) # Model choice model_choice_emotional = gr.Radio( choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS" ) with gr.Accordion("Advanced Settings", open=False): remove_silence_emotional = gr.Checkbox( label="Remove Silences", value=True, ) # Generate button generate_emotional_btn = gr.Button("Generate Emotional Speech", variant="primary") # Output audio audio_output_emotional = gr.Audio(label="Synthesized Audio") @gpu_decorator def generate_emotional_speech( regular_audio, regular_ref_text, gen_text, *args, ): num_additional_speech_types = max_speech_types - 1 speech_type_names_list = args[:num_additional_speech_types] speech_type_audios_list = args[num_additional_speech_types:2 * num_additional_speech_types] speech_type_ref_texts_list = args[2 * num_additional_speech_types:3 * num_additional_speech_types] model_choice = args[3 * num_additional_speech_types] remove_silence = args[3 * num_additional_speech_types + 1] # Collect the speech types and their audios into a dict speech_types = {'Regular': {'audio': regular_audio, 'ref_text': regular_ref_text}} for name_input, audio_input, ref_text_input in zip(speech_type_names_list, speech_type_audios_list, speech_type_ref_texts_list): if name_input and audio_input: speech_types[name_input] = {'audio': audio_input, 'ref_text': ref_text_input} # Parse the gen_text into segments segments = parse_speechtypes_text(gen_text) # For each segment, generate speech generated_audio_segments = [] current_emotion = 'Regular' for segment in segments: emotion = segment['emotion'] text = segment['text'] if emotion in speech_types: current_emotion = emotion else: # If emotion not available, default to Regular current_emotion = 'Regular' ref_audio = speech_types[current_emotion]['audio'] ref_text = speech_types[current_emotion].get('ref_text', '') # Generate speech for this segment audio, _ = infer(ref_audio, ref_text, text, model_choice, remove_silence, 0) sr, audio_data = audio generated_audio_segments.append(audio_data) # Concatenate all audio segments if generated_audio_segments: final_audio_data = np.concatenate(generated_audio_segments) return (sr, final_audio_data) else: gr.Warning("No audio generated.") return None generate_emotional_btn.click( generate_emotional_speech, inputs=[ regular_audio, regular_ref_text, gen_text_input_emotional, ] + speech_type_names + speech_type_audios + speech_type_ref_texts + [ model_choice_emotional, remove_silence_emotional, ], outputs=audio_output_emotional, ) # Validation function to disable Generate button if speech types are missing def validate_speech_types( gen_text, regular_name, *args ): num_additional_speech_types = max_speech_types - 1 speech_type_names_list = args[:num_additional_speech_types] # Collect the speech types names speech_types_available = set() if regular_name: speech_types_available.add(regular_name) for name_input in speech_type_names_list: if name_input: speech_types_available.add(name_input) # Parse the gen_text to get the speech types used segments = parse_emotional_text(gen_text) speech_types_in_text = set(segment['emotion'] for segment in segments) # Check if all speech types in text are available missing_speech_types = speech_types_in_text - speech_types_available if missing_speech_types: # Disable the generate button return gr.update(interactive=False) else: # Enable the generate button return gr.update(interactive=True) gen_text_input_emotional.change( validate_speech_types, inputs=[gen_text_input_emotional, regular_name] + speech_type_names, outputs=generate_emotional_btn ) with gr.Blocks() as app: gr.Markdown( """ # Antriksh AI """ ) # Add the image here gr.Image( value="logo.jpg", label="AI System Logo", show_label=False, width=300, height=150 ) gr.TabbedInterface([app_tts, app_podcast, app_emotional, app_credits], ["TTS", "Podcast", "Multi-Style", "Credits"]) @click.command() @click.option("--port", "-p", default=None, type=int, help="Port to run the app on") @click.option("--host", "-H", default=None, help="Host to run the app on") @click.option( "--share", "-s", default=False, is_flag=True, help="Share the app via Gradio share link", ) @click.option("--api", "-a", default=True, is_flag=True, help="Allow API access") def main(port, host, share, api): global app print(f"Starting app...") app.queue(api_open=api).launch( server_name=host, server_port=port, share=share, show_api=api ) >>>>>>> 3c3b34b0ce3a85c2e202414d6764288cad249a97 if __name__ == "__main__": app.launch(share=True)