Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,68 +1,64 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
import numpy as np
|
4 |
-
from pydub import AudioSegment
|
5 |
-
import io
|
6 |
-
from IPython.display import Audio
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
if data is not None:
|
17 |
-
response = requests.post(api_url, headers=headers, data=data)
|
18 |
-
else:
|
19 |
-
response = requests.post(api_url, headers=headers, json=payload)
|
20 |
-
response_json = response.json()
|
21 |
-
if 'error' in response_json:
|
22 |
-
print(f"Error in query function: {response_json['error']}")
|
23 |
-
return None
|
24 |
-
return response_json
|
25 |
|
26 |
# Define the function to translate speech
|
27 |
-
def translate_speech(
|
28 |
-
|
|
|
29 |
|
30 |
-
# Use the
|
31 |
-
|
32 |
-
output
|
33 |
-
print(f"Output: {output}") # Debug line
|
34 |
|
35 |
-
# Check if output
|
36 |
-
if
|
37 |
-
|
38 |
-
if 'error' in output:
|
39 |
-
print(f"Error: {output['error']}")
|
40 |
-
return
|
41 |
-
|
42 |
-
# Check if 'text' key exists in the output
|
43 |
-
if 'text' in output:
|
44 |
-
transcription = output["text"]
|
45 |
-
else:
|
46 |
-
print("Key 'text' does not exist in the output.")
|
47 |
-
return
|
48 |
else:
|
49 |
-
print("
|
50 |
return
|
51 |
|
52 |
# Use the translation pipeline to translate the transcription
|
53 |
-
translated_text =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
#
|
56 |
-
|
57 |
-
audio_bytes = response.content
|
58 |
|
59 |
-
|
60 |
-
return Audio(audio_bytes)
|
61 |
|
62 |
# Define the Gradio interface
|
63 |
iface = gr.Interface(
|
64 |
fn=translate_speech,
|
65 |
-
inputs=gr.inputs.
|
66 |
outputs=gr.outputs.Audio(type="numpy"),
|
67 |
title="Hausa to English Translation",
|
68 |
description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis."
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoTokenizer
|
3 |
import numpy as np
|
|
|
|
|
|
|
4 |
|
5 |
+
# Load the pipeline for speech recognition and translation
|
6 |
+
pipe = pipeline(
|
7 |
+
"automatic-speech-recognition",
|
8 |
+
model="Baghdad99/saad-speech-recognition-hausa-audio-to-text",
|
9 |
+
tokenizer="Baghdad99/saad-speech-recognition-hausa-audio-to-text"
|
10 |
+
)
|
11 |
+
translator = pipeline("text2text-generation", model="Baghdad99/saad-hausa-text-to-english-text")
|
12 |
+
tts = pipeline("text-to-speech", model="Baghdad99/english_voice_tts")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Define the function to translate speech
|
15 |
+
def translate_speech(audio):
|
16 |
+
# Separate the sample rate and the audio data
|
17 |
+
sample_rate, audio_data = audio
|
18 |
|
19 |
+
# Use the speech recognition pipeline to transcribe the audio
|
20 |
+
output = pipe(audio_data)
|
21 |
+
print(f"Output: {output}") # Print the output to see what it contains
|
|
|
22 |
|
23 |
+
# Check if the output contains 'text'
|
24 |
+
if 'text' in output:
|
25 |
+
transcription = output["text"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
else:
|
27 |
+
print("The output does not contain 'text'")
|
28 |
return
|
29 |
|
30 |
# Use the translation pipeline to translate the transcription
|
31 |
+
translated_text = translator(transcription, return_tensors="pt")
|
32 |
+
print(f"Translated text: {translated_text}") # Print the translated text to see what it contains
|
33 |
+
|
34 |
+
# Check if the translated text contains 'generated_token_ids'
|
35 |
+
if 'generated_token_ids' in translated_text[0]:
|
36 |
+
# Decode the tokens into text
|
37 |
+
translated_text_str = translator.tokenizer.decode(translated_text[0]['generated_token_ids'])
|
38 |
+
else:
|
39 |
+
print("The translated text does not contain 'generated_token_ids'")
|
40 |
+
return
|
41 |
+
|
42 |
+
# Use the text-to-speech pipeline to synthesize the translated text
|
43 |
+
synthesised_speech = tts(translated_text_str)
|
44 |
+
print(f"Synthesised speech: {synthesised_speech}") # Print the synthesised speech to see what it contains
|
45 |
+
|
46 |
+
# Check if the synthesised speech contains 'audio'
|
47 |
+
if 'audio' in synthesised_speech:
|
48 |
+
synthesised_speech_data = synthesised_speech['audio']
|
49 |
+
else:
|
50 |
+
print("The synthesised speech does not contain 'audio'")
|
51 |
+
return
|
52 |
|
53 |
+
# Scale the audio data to the range of int16 format
|
54 |
+
synthesised_speech = (synthesised_speech_data * 32767).astype(np.int16)
|
|
|
55 |
|
56 |
+
return 16000, synthesised_speech
|
|
|
57 |
|
58 |
# Define the Gradio interface
|
59 |
iface = gr.Interface(
|
60 |
fn=translate_speech,
|
61 |
+
inputs=gr.inputs.Audio(source="microphone", type="numpy"),
|
62 |
outputs=gr.outputs.Audio(type="numpy"),
|
63 |
title="Hausa to English Translation",
|
64 |
description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis."
|