Spaces:
Sleeping
Sleeping
Updated
Browse files
app.py
CHANGED
@@ -1,39 +1,39 @@
|
|
1 |
-
import gradio
|
2 |
-
import
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
transcription =
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
def synthesise(translated_text):
|
25 |
-
inputs = tts_tokenizer(translated_text, return_tensors='pt')
|
26 |
-
audio = tts_model.generate(inputs['input_ids'])
|
27 |
-
return audio
|
28 |
-
|
29 |
-
def translate_speech(audio, sampling_rate):
|
30 |
-
translated_text = translate(audio, sampling_rate=sampling_rate)
|
31 |
-
synthesised_speech = synthesise(translated_text)
|
32 |
# Define the max_range variable
|
33 |
max_range = 32767 # You can adjust this value based on your requirements
|
34 |
synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16)
|
|
|
35 |
return 16000, synthesised_speech
|
36 |
|
37 |
# Define the Gradio interface
|
38 |
-
iface =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
iface.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load the pipeline for speech recognition and translation
|
5 |
+
pipe = pipeline(
|
6 |
+
"automatic-speech-recognition",
|
7 |
+
model="Baghdad99/saad-speech-recognition-hausa-audio-to-text",
|
8 |
+
tokenizer="Baghdad99/saad-speech-recognition-hausa-audio-to-text"
|
9 |
+
)
|
10 |
+
translator = pipeline("text2text-generation", model="Baghdad99/saad-hausa-text-to-english-text")
|
11 |
+
tts = pipeline("text-to-speech", model="Baghdad99/english_voice_tts")
|
12 |
+
|
13 |
+
# Define the function to translate speech
|
14 |
+
def translate_speech(audio):
|
15 |
+
# Use the speech recognition pipeline to transcribe the audio
|
16 |
+
transcription = pipe(audio, sampling_rate=16000)[0]["transcription"]
|
17 |
+
|
18 |
+
# Use the translation pipeline to translate the transcription
|
19 |
+
translated_text = translator(transcription, return_tensors="pt", padding=True)
|
20 |
+
|
21 |
+
# Use the text-to-speech pipeline to synthesize the translated text
|
22 |
+
synthesised_speech = tts(translated_text, return_tensors='pt')
|
23 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
# Define the max_range variable
|
25 |
max_range = 32767 # You can adjust this value based on your requirements
|
26 |
synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16)
|
27 |
+
|
28 |
return 16000, synthesised_speech
|
29 |
|
30 |
# Define the Gradio interface
|
31 |
+
iface = gr.Interface(
|
32 |
+
fn=translate_speech,
|
33 |
+
inputs=gr.inputs.Audio(source="microphone", type="numpy"),
|
34 |
+
outputs=gr.outputs.Audio(type="numpy"),
|
35 |
+
title="Hausa to English Translation",
|
36 |
+
description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis."
|
37 |
+
)
|
38 |
+
|
39 |
iface.launch()
|