Baghdad99 commited on
Commit
c23e905
·
1 Parent(s): e674ed0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -3
app.py CHANGED
@@ -2,6 +2,8 @@ import gradio as gr
2
  from transformers import pipeline, AutoTokenizer
3
  from huggingsound import SpeechRecognitionModel
4
  import numpy as np
 
 
5
 
6
  # Load the model for speech recognition
7
  model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-english")
@@ -16,9 +18,16 @@ def translate_speech(audio_data_tuple):
16
  # Extract the audio data from the tuple
17
  sample_rate, audio_data = audio_data_tuple
18
 
19
- # Use the speech recognition model to transcribe the audio
20
- output = model.transcribe(audio_data)
21
- print(f"Output: {output}") # Print the output to see what it contains
 
 
 
 
 
 
 
22
 
23
  # Use the translation pipeline to translate the transcription
24
  translated_text = translator(output, return_tensors="pt")
 
2
  from transformers import pipeline, AutoTokenizer
3
  from huggingsound import SpeechRecognitionModel
4
  import numpy as np
5
+ import soundfile as sf
6
+ import tempfile
7
 
8
  # Load the model for speech recognition
9
  model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-english")
 
18
  # Extract the audio data from the tuple
19
  sample_rate, audio_data = audio_data_tuple
20
 
21
+ # Save the audio data to a temporary file
22
+ with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp_audio_file:
23
+ sf.write(temp_audio_file.name, audio_data, sample_rate)
24
+
25
+ # Use the speech recognition model to transcribe the audio
26
+ output = model.transcribe([temp_audio_file.name])
27
+ print(f"Output: {output}") # Print the output to see what it contains
28
+
29
+ # ... (rest of your code)
30
+
31
 
32
  # Use the translation pipeline to translate the transcription
33
  translated_text = translator(output, return_tensors="pt")