Baghdad99 commited on
Commit
bc3fe61
·
1 Parent(s): 035bf95

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -17
app.py CHANGED
@@ -1,20 +1,17 @@
 
1
  import gradio as gr
2
- from transformers import pipeline, AutoTokenizer
3
- from huggingsound import SpeechRecognitionModel
4
  import numpy as np
5
  import soundfile as sf
6
  import tempfile
7
 
8
- ## Load the model for speech recognition
9
- model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-english")
10
-
11
  translator = pipeline("text2text-generation", model="dammyogt/damilola-finetuned-NLP-opus-mt-en-ha")
12
  tts = pipeline("text-to-speech", model="Baghdad99/hausa_voice_tts")
13
 
14
- # Define the function to translate speech
15
  def translate_speech(audio_data_tuple):
16
- print(f"Type of audio: {type(audio_data_tuple)}, Value of audio: {audio_data_tuple}") # Debug line
17
-
18
  # Extract the audio data from the tuple
19
  sample_rate, audio_data = audio_data_tuple
20
 
@@ -22,29 +19,34 @@ def translate_speech(audio_data_tuple):
22
  with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp_audio_file:
23
  sf.write(temp_audio_file.name, audio_data, sample_rate)
24
 
25
- # Use the speech recognition model to transcribe the audio
26
- output = model.transcribe([temp_audio_file.name])
27
- print(f"Output: {output}") # Print the output to see what it contains
28
-
29
- # Extract the transcriptions from the output
30
- transcriptions = [item['transcription'] for item in output]
 
 
 
 
 
 
31
 
32
- for transcription in transcriptions:
33
  # Use the translation pipeline to translate the transcription
34
  translated_text = translator(transcription, return_tensors="pt")
35
- print(f"Translated text: {translated_text}") # Print the translated text to see what it contains
36
 
37
  # Check if the translated text contains 'generated_token_ids'
38
  if 'generated_token_ids' in translated_text[0]:
39
  # Decode the tokens into text
40
  translated_text_str = translator.tokenizer.decode(translated_text[0]['generated_token_ids'])
 
41
  else:
42
  print("The translated text does not contain 'generated_token_ids'")
43
  return
44
 
45
  # Use the text-to-speech pipeline to synthesize the translated text
46
  synthesised_speech = tts(translated_text_str)
47
- print(f"Synthesised speech: {synthesised_speech}") # Print the synthesised speech to see what it contains
48
 
49
  # Check if the synthesised speech contains 'audio'
50
  if 'audio' in synthesised_speech:
 
1
+ import torch # Add this line
2
  import gradio as gr
3
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, pipeline, AutoTokenizer
 
4
  import numpy as np
5
  import soundfile as sf
6
  import tempfile
7
 
8
+ # Load the models and processors
9
+ asr_model = Wav2Vec2ForCTC.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-english")
10
+ asr_processor = Wav2Vec2Processor.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-english")
11
  translator = pipeline("text2text-generation", model="dammyogt/damilola-finetuned-NLP-opus-mt-en-ha")
12
  tts = pipeline("text-to-speech", model="Baghdad99/hausa_voice_tts")
13
 
 
14
  def translate_speech(audio_data_tuple):
 
 
15
  # Extract the audio data from the tuple
16
  sample_rate, audio_data = audio_data_tuple
17
 
 
19
  with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp_audio_file:
20
  sf.write(temp_audio_file.name, audio_data, sample_rate)
21
 
22
+ # Prepare the input dictionary
23
+ input_dict = asr_processor(temp_audio_file.name, return_tensors="pt", padding=True)
24
+
25
+ # Use the ASR model to get the logits
26
+ logits = asr_model(input_dict.input_values.to("cpu")).logits
27
+
28
+ # Get the predicted IDs
29
+ pred_ids = torch.argmax(logits, dim=-1)[0]
30
+
31
+ # Decode the predicted IDs to get the transcription
32
+ transcription = asr_processor.decode(pred_ids)
33
+ print(f"Transcription: {transcription}") # Print the transcription
34
 
 
35
  # Use the translation pipeline to translate the transcription
36
  translated_text = translator(transcription, return_tensors="pt")
37
+ print(f"Translated text: {translated_text}") # Print the translated text
38
 
39
  # Check if the translated text contains 'generated_token_ids'
40
  if 'generated_token_ids' in translated_text[0]:
41
  # Decode the tokens into text
42
  translated_text_str = translator.tokenizer.decode(translated_text[0]['generated_token_ids'])
43
+ print(f"Translated text string: {translated_text_str}") # Print the translated text string
44
  else:
45
  print("The translated text does not contain 'generated_token_ids'")
46
  return
47
 
48
  # Use the text-to-speech pipeline to synthesize the translated text
49
  synthesised_speech = tts(translated_text_str)
 
50
 
51
  # Check if the synthesised speech contains 'audio'
52
  if 'audio' in synthesised_speech: