Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
-
from transformers import pipeline, AutoTokenizer,
|
|
|
4 |
import numpy as np
|
5 |
from pydub import AudioSegment
|
6 |
|
7 |
-
# Load the pipeline for speech recognition
|
8 |
pipe = pipeline(
|
9 |
"automatic-speech-recognition",
|
10 |
model="DrishtiSharma/whisper-large-v2-hausa",
|
@@ -12,9 +13,9 @@ pipe = pipeline(
|
|
12 |
)
|
13 |
|
14 |
# Load the new translation model and tokenizer
|
15 |
-
model_name = '
|
16 |
-
model =
|
17 |
-
tokenizer =
|
18 |
|
19 |
tts = pipeline("text-to-speech", model="Baghdad99/english_voice_tts")
|
20 |
|
@@ -44,22 +45,11 @@ def translate_speech(audio_file):
|
|
44 |
print("The output does not contain 'text'")
|
45 |
return
|
46 |
|
47 |
-
# Use the translation
|
48 |
-
translated_text = translator(transcription, return_tensors="pt")
|
49 |
-
print(f"Translated text: {translated_text}") # Print the translated text to see what it contains
|
50 |
-
|
51 |
-
# Check if the translated text contains 'generated_token_ids'
|
52 |
-
if 'generated_token_ids' in translated_text[0]:
|
53 |
-
# Decode the tokens into text
|
54 |
-
translated_text_str = translator.tokenizer.decode(translated_text[0]['generated_token_ids'])
|
55 |
-
else:
|
56 |
-
print("The translated text does not contain 'generated_token_ids'")
|
57 |
-
return
|
58 |
-
|
59 |
-
# Use the new translation model to translate the transcription
|
60 |
text = "translate Hausa to English: " + transcription
|
61 |
-
|
62 |
-
|
|
|
63 |
|
64 |
# Decode the tokens into text
|
65 |
translated_text_str = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
@@ -93,4 +83,3 @@ iface = gr.Interface(
|
|
93 |
)
|
94 |
|
95 |
iface.launch()
|
96 |
-
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
+
from transformers import pipeline, AutoTokenizer, M2M100ForConditionalGeneration
|
4 |
+
from tokenization_small100 import SMALL100Tokenizer
|
5 |
import numpy as np
|
6 |
from pydub import AudioSegment
|
7 |
|
8 |
+
# Load the pipeline for speech recognition
|
9 |
pipe = pipeline(
|
10 |
"automatic-speech-recognition",
|
11 |
model="DrishtiSharma/whisper-large-v2-hausa",
|
|
|
13 |
)
|
14 |
|
15 |
# Load the new translation model and tokenizer
|
16 |
+
model_name = 'alirezamsh/small100'
|
17 |
+
model = M2M100ForConditionalGeneration.from_pretrained(model_name)
|
18 |
+
tokenizer = SMALL100Tokenizer.from_pretrained(model_name)
|
19 |
|
20 |
tts = pipeline("text-to-speech", model="Baghdad99/english_voice_tts")
|
21 |
|
|
|
45 |
print("The output does not contain 'text'")
|
46 |
return
|
47 |
|
48 |
+
# Use the new translation model to translate the transcription
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
text = "translate Hausa to English: " + transcription
|
50 |
+
tokenizer.tgt_lang = "en"
|
51 |
+
encoded_text = tokenizer(text, return_tensors="pt")
|
52 |
+
outputs = model.generate(**encoded_text)
|
53 |
|
54 |
# Decode the tokens into text
|
55 |
translated_text_str = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
83 |
)
|
84 |
|
85 |
iface.launch()
|
|