Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import torchaudio | |
from torchaudio.transforms import Resample | |
from transformers import AutoFeatureExtractor, AutoModelForAudioXVector | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
STYLE = """ | |
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" integrity="sha256-YvdLHPgkqJ8DVUxjjnGVlMMJtNimJ6dYkowFFvp4kKs=" crossorigin="anonymous"> | |
""" | |
OUTPUT_OK = ( | |
STYLE | |
+ """ | |
<div class="container"> | |
<div class="row"><h1 style="text-align: center">The speakers are</h1></div> | |
<div class="row"><h1 class="display-1 text-success" style="text-align: center">{:.1f}%</h1></div> | |
<div class="row"><h1 style="text-align: center">similar</h1></div> | |
<div class="row"><h1 class="text-success" style="text-align: center">Welcome, human!</h1></div> | |
<div class="row"><small style="text-align: center">(You must get at least 80% to be considered the same person)</small><div class="row"> | |
</div> | |
""" | |
) | |
OUTPUT_FAIL = ( | |
STYLE | |
+ """ | |
<div class="container"> | |
<div class="row"><h1 style="text-align: center">The speakers are</h1></div> | |
<div class="row"><h1 class="display-1 text-danger" style="text-align: center">{:.1f}%</h1></div> | |
<div class="row"><h1 style="text-align: center">similar</h1></div> | |
<div class="row"><h1 class="text-danger" style="text-align: center">You shall not pass!</h1></div> | |
<div class="row"><small style="text-align: center">(You must get at least 80% to be considered the same person)</small><div class="row"> | |
</div> | |
""" | |
) | |
THRESHOLD = 0.80 | |
model_name = "microsoft/wavlm-base-plus-sv" | |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name) | |
model = AutoModelForAudioXVector.from_pretrained(model_name).to(device) | |
cosine_sim = torch.nn.CosineSimilarity(dim=-1) | |
def preprocess_audio(file_path, target_sr=16000): | |
wav, sr = torchaudio.load(file_path) | |
if sr != target_sr: | |
wav = Resample(orig_freq=sr, new_freq=target_sr)(wav) | |
return wav | |
def similarity_fn(path1, path2): | |
if not (path1 and path2): | |
return '<b style="color:red">ERROR: Please record audio for *both* speakers!</b>' | |
wav1 = preprocess_audio(path1) | |
wav2 = preprocess_audio(path2) | |
input1 = feature_extractor(wav1.squeeze(0), return_tensors="pt", sampling_rate=16000).input_values.to(device) | |
input2 = feature_extractor(wav2.squeeze(0), return_tensors="pt", sampling_rate=16000).input_values.to(device) | |
with torch.no_grad(): | |
emb1 = model(input1).embeddings | |
emb2 = model(input2).embeddings | |
emb1 = torch.nn.functional.normalize(emb1, dim=-1).cpu() | |
emb2 = torch.nn.functional.normalize(emb2, dim=-1).cpu() | |
similarity = cosine_sim(emb1, emb2).numpy()[0] | |
if similarity >= THRESHOLD: | |
output = OUTPUT_OK.format(similarity * 100) | |
else: | |
output = OUTPUT_FAIL.format(similarity * 100) | |
return output | |
with gr.Blocks() as demo: | |
gr.Markdown("# Voice Authentication with WavLM + X-Vectors") | |
gr.Markdown( | |
"This demo compares two speech samples to determine if they are from the same speaker. " | |
"Try it with your own voice!" | |
) | |
with gr.Row(): | |
input1 = gr.Audio(sources=["microphone", "upload"], type="filepath", label="Speaker #1") | |
input2 = gr.Audio(sources=["microphone", "upload"], type="filepath", label="Speaker #2") | |
output = gr.HTML(label="Result") | |
btn = gr.Button("Compare Speakers") | |
btn.click(similarity_fn, inputs=[input1, input2], outputs=output) | |
gr.Examples( | |
examples=[ | |
["samples/denzel_washington.mp3", "samples/denzel_washington.mp3"], | |
["samples/heath_ledger_2.mp3", "samples/heath_ledger_3.mp3"], | |
["samples/heath_ledger_3.mp3", "samples/denzel_washington.mp3"], | |
["samples/denzel_washington.mp3", "samples/heath_ledger_2.mp3"], | |
], | |
inputs=[input1, input2], | |
) | |
gr.Markdown( | |
"<p style='text-align: center'>" | |
"<a href='https://huggingface.co/microsoft/wavlm-base-plus-sv' target='_blank'>ποΈ Learn more about WavLM</a> | " | |
"<a href='https://arxiv.org/abs/2110.13900' target='_blank'>π WavLM paper</a> | " | |
"<a href='https://www.danielpovey.com/files/2018_icassp_xvectors.pdf' target='_blank'>π X-Vector paper</a>" | |
"</p>" | |
) | |
demo.launch() | |