Spaces:
Runtime error
Runtime error
File size: 15,490 Bytes
66982e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
# Copyright 2023 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
### This file has been modified for the purposes of the ConsistencyTTA generation. ###
import math
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from .utils.configuration_utils import ConfigMixin, register_to_config
from .utils.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines
the cumulative product of (1-beta) over time from t = [0,1].
Contains a function alpha_bar that takes an argument t and transforms it to the
cumulative product of (1-beta) up to that part of the diffusion process.
Args:
num_diffusion_timesteps (`int`): the number of betas to produce.
max_beta (`float`):
the maximum beta to use; use values lower than 1 to prevent singularities.
Returns:
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
"""
def alpha_bar(time_step):
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return torch.tensor(betas, dtype=torch.float32)
class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
"""
Implements Algorithm 2 (Heun steps) from Karras et al. (2022). for discrete beta schedules.
Based on the original k-diffusion implementation by Katherine Crowson:
https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/
k_diffusion/sampling.py#L90
[`~ConfigMixin`] takes care of storing all config attributes that are passed
in the scheduler's `__init__` function, such as `num_train_timesteps`.
They can be accessed via `scheduler.config.num_train_timesteps`.
[`SchedulerMixin`] provides general loading and saving functionality via the
[`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions.
Args:
num_train_timesteps (`int`):
number of diffusion steps used to train the model.
beta_start (`float`):
the starting `beta` value of inference.
beta_end (`float`):
the final `beta` value.
beta_schedule (`str`):
the beta schedule, a mapping from a beta range to a sequence of betas for stepping
the model. Choose from `linear` or `scaled_linear`.
trained_betas (`np.ndarray`, optional):
option to pass an array of betas directly to the constructor to bypass
`beta_start`, `beta_end` etc.
options to clip the variance used when adding noise to the denoised sample.
Choose from `fixed_small`, `fixed_small_log`, `fixed_large`,
`fixed_large_log`, `learned` or `learned_range`.
prediction_type (`str`, default `epsilon`, optional):
prediction type of the scheduler function, one of
`epsilon` (predicting the noise of the diffusion process),
`sample` (directly predicting the noisy sample`), or
`v_prediction` (see section 2.4 https://imagen.research.google/video/paper.pdf)
"""
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
order = 2
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.00085, # sensible defaults
beta_end: float = 0.012,
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
prediction_type: str = "epsilon",
use_karras_sigmas: Optional[bool] = False,
):
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
elif beta_schedule == "linear":
self.betas = torch.linspace(
beta_start, beta_end, num_train_timesteps, dtype=torch.float32
)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = (
torch.linspace(
beta_start ** 0.5, beta_end ** 0.5,
num_train_timesteps, dtype=torch.float32
) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
else:
raise NotImplementedError(
f"{beta_schedule} does is not implemented for {self.__class__}"
)
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
# set all values
self.use_karras_sigmas = use_karras_sigmas
self.set_timesteps(num_train_timesteps, None, num_train_timesteps)
def index_for_timestep(self, timestep):
"""Get the first / last index at which self.timesteps == timestep
"""
assert len(timestep.shape) < 2
avail_timesteps = self.timesteps.reshape(1, -1).to(timestep.device)
mask = (avail_timesteps == timestep.reshape(-1, 1))
assert (mask.sum(dim=1) != 0).all(), f"timestep: {timestep.tolist()}"
mask = mask.cpu() * torch.arange(mask.shape[1]).reshape(1, -1)
if self.state_in_first_order:
return mask.argmax(dim=1).numpy()
else:
return mask.argmax(dim=1).numpy() - 1
def scale_model_input(
self,
sample: torch.FloatTensor,
timestep: Union[float, torch.FloatTensor],
) -> torch.FloatTensor:
"""
Ensures interchangeability with schedulers that need to scale the
denoising model input depending on the current timestep.
Args:
sample (`torch.FloatTensor`): input sample
timestep (`int`, optional): current timestep
Returns:
`torch.FloatTensor`: scaled input sample
"""
if not torch.is_tensor(timestep):
timestep = torch.tensor(timestep)
timestep = timestep.to(sample.device).reshape(-1)
step_index = self.index_for_timestep(timestep)
sigma = self.sigmas[step_index].reshape(-1, 1, 1, 1).to(sample.device)
sample = sample / ((sigma ** 2 + 1) ** 0.5) # sample *= sqrt_alpha_prod
return sample
def set_timesteps(
self,
num_inference_steps: int,
device: Union[str, torch.device] = None,
num_train_timesteps: Optional[int] = None,
):
"""
Sets the timesteps used for the diffusion chain.
Supporting function to be run before inference.
Args:
num_inference_steps (`int`):
the number of diffusion steps used when generating samples
with a pre-trained model.
device (`str` or `torch.device`, optional):
the device to which the timesteps should be moved to.
If `None`, the timesteps are not moved.
"""
self.num_inference_steps = num_inference_steps
num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps
timesteps = np.linspace(
0, num_train_timesteps - 1, num_inference_steps, dtype=float
)[::-1].copy()
# sigma^2 = beta / alpha
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
log_sigmas = np.log(sigmas)
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
if self.use_karras_sigmas:
sigmas = self._convert_to_karras(
in_sigmas=sigmas, num_inference_steps=self.num_inference_steps
)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
sigmas = torch.from_numpy(sigmas).to(device=device)
self.sigmas = torch.cat(
[sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]]
)
# standard deviation of the initial noise distribution
self.init_noise_sigma = self.sigmas.max()
timesteps = torch.from_numpy(timesteps)
timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)])
if 'mps' in str(device):
timesteps = timesteps.float()
self.timesteps = timesteps.to(device)
# empty dt and derivative
self.prev_derivative = None
self.dt = None
def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
log_sigma = np.log(sigma)
# get distribution
dists = log_sigma - log_sigmas[:, np.newaxis]
# get sigmas range
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(
max=log_sigmas.shape[0] - 2
)
high_idx = low_idx + 1
low = log_sigmas[low_idx]
high = log_sigmas[high_idx]
# interpolate sigmas
w = (low - log_sigma) / (low - high)
w = np.clip(w, 0, 1)
# transform interpolation to time range
t = (1 - w) * low_idx + w * high_idx
t = t.reshape(sigma.shape)
return t
def _convert_to_karras(
self, in_sigmas: torch.FloatTensor, num_inference_steps
) -> torch.FloatTensor:
"""Constructs the noise schedule of Karras et al. (2022)."""
sigma_min: float = in_sigmas[-1].item()
sigma_max: float = in_sigmas[0].item()
rho = 7.0 # 7.0 is the value used in the paper
ramp = np.linspace(0, 1, num_inference_steps)
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
@property
def state_in_first_order(self):
return self.dt is None
def step(
self,
model_output: Union[torch.FloatTensor, np.ndarray],
timestep: Union[float, torch.FloatTensor],
sample: Union[torch.FloatTensor, np.ndarray],
return_dict: bool = True,
) -> Union[SchedulerOutput, Tuple]:
"""
Predict the sample at the previous timestep by reversing the SDE.
Core function to propagate the diffusion process from the learned
model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor` or `np.ndarray`):
direct output from learned diffusion model.
timestep (`int`):
current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor` or `np.ndarray`):
current instance of sample being created by diffusion process.
return_dict (`bool`):
option for returning tuple rather than SchedulerOutput class
Returns:
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
[`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict`
is True, otherwise a `tuple`. When returning a tuple,
the first element is the sample tensor.
"""
if not torch.is_tensor(timestep):
timestep = torch.tensor(timestep)
timestep = timestep.reshape(-1).to(sample.device)
step_index = self.index_for_timestep(timestep)
if self.state_in_first_order:
sigma = self.sigmas[step_index]
sigma_next = self.sigmas[step_index + 1]
else:
# 2nd order / Heun's method
sigma = self.sigmas[step_index - 1]
sigma_next = self.sigmas[step_index]
sigma = sigma.reshape(-1, 1, 1, 1).to(sample.device)
sigma_next = sigma_next.reshape(-1, 1, 1, 1).to(sample.device)
sigma_input = sigma if self.state_in_first_order else sigma_next
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
pred_original_sample = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
alpha_prod = 1 / (sigma_input ** 2 + 1)
pred_original_sample = (
sample * alpha_prod - model_output * (sigma_input * alpha_prod ** .5)
)
elif self.config.prediction_type == "sample":
raise NotImplementedError("prediction_type not implemented yet: sample")
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} "
"must be one of `epsilon`, or `v_prediction`"
)
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
derivative = (sample - pred_original_sample) / sigma
# 3. delta timestep
dt = sigma_next - sigma
# store for 2nd order step
self.prev_derivative = derivative
self.dt = dt
self.sample = sample
else:
# 2. 2nd order / Heun's method
derivative = (sample - pred_original_sample) / sigma_next
derivative = (self.prev_derivative + derivative) / 2
# 3. take prev timestep & sample
dt = self.dt
sample = self.sample
# free dt and derivative
# Note, this puts the scheduler in "first order mode"
self.prev_derivative = None
self.dt = None
self.sample = None
prev_sample = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=prev_sample)
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.FloatTensor,
) -> torch.FloatTensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
self.sigmas = self.sigmas.to(
device=original_samples.device, dtype=original_samples.dtype
)
self.timesteps = self.timesteps.to(original_samples.device)
timesteps = timesteps.to(original_samples.device)
step_indices = self.index_for_timestep(timesteps)
sigma = self.sigmas[step_indices].flatten()
while len(sigma.shape) < len(original_samples.shape):
sigma = sigma.unsqueeze(-1)
noisy_samples = original_samples + noise * sigma
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps
|