import streamlit as st from transformers import pipeline st.title("Text Sentiment Analysis App") st.write("Analyze whether a given text is positive or negative using a Hugging Face model.") user_input = st.text_area("Enter your text:", placeholder="For example: I love this product!") # Initialize the model @st.cache_resource def load_sentiment_model(): return pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english") # Load the model model = load_sentiment_model() # Perform analysis if input is provided if st.button("Analyze"): if user_input.strip(): with st.spinner("Analyzing sentiment..."): result = model(user_input) st.success("Analysis complete!") # Extracting the label and score label = result[0]['label'] score = result[0]['score'] # Display the result st.write(f"**Label:** {label}") st.write(f"**Confidence Score:** {score:.2f}") else: st.error("Please enter some text!")