balnur commited on
Commit
526b8c5
·
1 Parent(s): f897d1b
Files changed (2) hide show
  1. app.py +25 -7
  2. requirements.txt +3 -0
app.py CHANGED
@@ -1,11 +1,29 @@
1
  import streamlit as st
 
2
 
3
- def load_model():
4
- print("loading heavy model")
5
- return"model"
6
 
7
- print("before slider")
8
- x = st.slider('Select a value')
9
 
10
- st.write(x, 'squared is', x * x)
11
- print("after slider")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ from transformers import pipeline
3
 
4
+ print("Loading the model...")
5
+
6
+ # Title and Description
7
 
8
+ st.title("Sentiment Analysis Web App")
 
9
 
10
+ st.write("""
11
+ ### Powered by Hugging Face and Streamlit
12
+ This app uses a pre-trained NLP model from Hugging Face to analyze the sentiment of the text you enter.
13
+ Try entering a sentence to see if it's positive, negative, or neutral!
14
+ """)
15
+ # Initialize Hugging Face Sentiment Analysis Pipeline
16
+ @st.cache_resource
17
+ def load_model():
18
+ print("before load model")
19
+ return pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
20
+ sentiment_analyzer = load_model()
21
+ # Input Text from User
22
+ user_input = st.text_area("Enter some text to analyze:", "Streamlit and Hugging Face make NLP fun!")
23
+ # Analyze Sentiment
24
+ if st.button("Analyze Sentiment"):
25
+ print("button click")
26
+ if user_input.strip():
27
+ result = sentiment_analyzer(user_input) [0]
28
+ sentiment result["label"]
29
+ score = result['score']
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ streamlit=1.14.1
2
+ transformers
3
+ torch