Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
from diffusers import StableDiffusionPipeline | |
import torch | |
import os | |
import logging | |
from huggingface_hub import login | |
import accelerate | |
# Set up logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Read the Hugging Face access token from the environment variable | |
read_token = os.getenv('AccToken') | |
if not read_token: | |
raise ValueError("Hugging Face access token not found. Please set the AccToken environment variable.") | |
logger.info(f"Hugging Face access token found: {read_token[:5]}...") # Log the first 5 characters for verification | |
# Log in to Hugging Face using the token | |
login(read_token) | |
# Define a dictionary of conversational models | |
conversational_models = { | |
"DeepSeek R1": "deepseek-ai/DeepSeek-R1", | |
"Perplexity (R1 Post-trained)": "perplexity-ai/r1-1776", | |
"Llama-Instruct by Meta": "meta-llama/Llama-3.2-3B-Instruct", | |
"Mistral": "mistralai/Mistral-7B-v0.1", | |
"Gemma": "google/gemma-2-2b-it", | |
} | |
# Define a dictionary of Text-to-Image models | |
text_to_image_models = { | |
"Stable Diffusion 3.5 Large": "stabilityai/stable-diffusion-3.5-large", | |
"Stable Diffusion 1.4": "CompVis/stable-diffusion-v1-4", | |
"Flux Dev": "black-forest-labs/FLUX.1-dev", | |
} | |
# Define a dictionary of Text-to-Speech models | |
text_to_speech_models = { | |
"Spark TTS": "SparkAudio/Spark-TTS-0.5B", | |
} | |
# Initialize tokenizers and models for conversational AI | |
conversational_tokenizers = {} | |
conversational_models_loaded = {} | |
# Initialize pipelines for Text-to-Image | |
text_to_image_pipelines = {} | |
# Initialize pipelines for Text-to-Speech | |
text_to_speech_pipelines = {} | |
# Initialize pipelines for other tasks | |
visual_qa_pipeline = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa") | |
document_qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2") | |
image_classification_pipeline = pipeline("image-classification", model="facebook/deit-base-distilled-patch16-224") | |
object_detection_pipeline = pipeline("object-detection", model="facebook/detr-resnet-50") | |
video_classification_pipeline = pipeline("video-classification", model="facebook/timesformer-base-finetuned-k400") | |
summarization_pipeline = pipeline("summarization", model="facebook/bart-large-cnn") | |
# Load speaker embeddings for text-to-audio | |
def load_speaker_embeddings(model_name): | |
if model_name == "microsoft/speecht5_tts": | |
logger.info("Loading speaker embeddings for SpeechT5") | |
from datasets import load_dataset | |
dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
speaker_embeddings = torch.tensor(dataset[7306]["xvector"]).unsqueeze(0) # Example speaker | |
return speaker_embeddings | |
return None | |
# Use a different model for text-to-audio if stabilityai/stable-audio-open-1.0 is not supported | |
try: | |
text_to_audio_pipeline = pipeline("text-to-audio", model="stabilityai/stable-audio-open-1.0") | |
except ValueError as e: | |
logger.error(f"Error loading stabilityai/stable-audio-open-1.0: {e}") | |
logger.info("Falling back to a different text-to-audio model.") | |
text_to_audio_pipeline = pipeline("text-to-audio", model="microsoft/speecht5_tts") | |
speaker_embeddings = load_speaker_embeddings("microsoft/speecht5_tts") | |
audio_classification_pipeline = pipeline("audio-classification", model="facebook/wav2vec2-base") | |
def load_conversational_model(model_name): | |
if model_name not in conversational_models_loaded: | |
logger.info(f"Loading conversational model: {model_name}") | |
tokenizer = AutoTokenizer.from_pretrained( | |
conversational_models[model_name], | |
use_auth_token=read_token, | |
trust_remote_code=True | |
) | |
try: | |
model = AutoModelForCausalLM.from_pretrained( | |
conversational_models[model_name], | |
use_auth_token=read_token, | |
trust_remote_code=True, | |
device_map="auto" if torch.cuda.is_available() else "cpu" | |
) | |
except RuntimeError as e: | |
logger.error(f"RuntimeError: {e}") | |
logger.info("Falling back to CPU for the model.") | |
model = AutoModelForCausalLM.from_pretrained( | |
conversational_models[model_name], | |
use_auth_token=read_token, | |
trust_remote_code=True, | |
device_map="cpu" | |
) | |
conversational_tokenizers[model_name] = tokenizer | |
conversational_models_loaded[model_name] = model | |
return conversational_tokenizers[model_name], conversational_models_loaded[model_name] | |
def chat(model_name, user_input, history=[]): | |
tokenizer, model = load_conversational_model(model_name) | |
# Encode the input | |
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt") | |
# Generate a response | |
with torch.no_grad(): | |
output = model.generate(input_ids, max_length=150, pad_token_id=tokenizer.eos_token_id) | |
response = tokenizer.decode(output[0], skip_special_tokens=True) | |
# Clean up the response to remove the user input part | |
response = response[len(user_input):].strip() | |
# Append to chat history | |
history.append((user_input, response)) | |
return history, history | |
def generate_image(model_name, prompt): | |
if model_name not in text_to_image_pipelines: | |
logger.info(f"Loading text-to-image model: {model_name}") | |
text_to_image_pipelines[model_name] = StableDiffusionPipeline.from_pretrained( | |
text_to_image_models[model_name], | |
use_auth_token=read_token, | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
device_map="auto" if torch.cuda.is_available() else "cpu" | |
) | |
pipeline = text_to_image_pipelines[model_name] | |
image = pipeline(prompt).images[0] | |
return image | |
def generate_speech(model_name, text): | |
if model_name not in text_to_speech_pipelines: | |
logger.info(f"Loading text-to-speech model: {model_name}") | |
text_to_speech_pipelines[model_name] = pipeline( | |
"text-to-speech", | |
model=text_to_speech_models[model_name], | |
use_auth_token=read_token, | |
device=device | |
) | |
pipeline = text_to_speech_pipelines[model_name] | |
audio = pipeline(text, speaker_embeddings=speaker_embeddings) | |
return audio["audio"] | |
def visual_qa(image, question): | |
result = visual_qa_pipeline(image, question) | |
return result["answer"] | |
def document_qa(document, question): | |
result = document_qa_pipeline(question=question, context=document) | |
return result["answer"] | |
def image_classification(image): | |
result = image_classification_pipeline(image) | |
return result | |
def object_detection(image): | |
result = object_detection_pipeline(image) | |
return result | |
def video_classification(video): | |
result = video_classification_pipeline(video) | |
return result | |
def summarize_text(text): | |
result = summarization_pipeline(text) | |
return result[0]["summary_text"] | |
def text_to_audio(text): | |
global speaker_embeddings | |
result = text_to_audio_pipeline(text, speaker_embeddings=speaker_embeddings) | |
return result["audio"] | |
def audio_classification(audio): | |
result = audio_classification_pipeline(audio) | |
return result | |
# Define the Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("## Versatile AI Chatbot and Text-to-X Tasks") | |
with gr.Tab("Conversational AI"): | |
conversational_model_choice = gr.Dropdown(list(conversational_models.keys()), label="Choose a Conversational Model") | |
conversational_chatbot = gr.Chatbot(label="Chat") | |
conversational_message = gr.Textbox(label="Message") | |
conversational_submit = gr.Button("Submit") | |
conversational_submit.click(chat, inputs=[conversational_model_choice, conversational_message, conversational_chatbot], outputs=[conversational_chatbot, conversational_chatbot]) | |
conversational_message.submit(chat, inputs=[conversational_model_choice, conversational_message, conversational_chatbot], outputs=[conversational_chatbot, conversational_chatbot]) | |
with gr.Tab("Text-to-Image"): | |
text_to_image_model_choice = gr.Dropdown(list(text_to_image_models.keys()), label="Choose a Text-to-Image Model") | |
text_to_image_prompt = gr.Textbox(label="Prompt") | |
text_to_image_generate = gr.Button("Generate Image") | |
text_to_image_output = gr.Image(label="Generated Image") | |
text_to_image_generate.click(generate_image, inputs=[text_to_image_model_choice, text_to_image_prompt], outputs=text_to_image_output) | |
with gr.Tab("Text-to-Speech"): | |
text_to_speech_model_choice = gr.Dropdown(list(text_to_speech_models.keys()), label="Choose a Text-to-Speech Model") | |
text_to_speech_text = gr.Textbox(label="Text") | |
text_to_speech_generate = gr.Button("Generate Speech") | |
text_to_speech_output = gr.Audio(label="Generated Speech") | |
text_to_speech_generate.click(generate_speech, inputs=[text_to_speech_model_choice, text_to_speech_text], outputs=text_to_speech_output) | |
with gr.Tab("Visual Question Answering"): | |
visual_qa_image = gr.Image(label="Upload Image") | |
visual_qa_question = gr.Textbox(label="Question") | |
visual_qa_generate = gr.Button("Answer") | |
visual_qa_output = gr.Textbox(label="Answer") | |
visual_qa_generate.click(visual_qa, inputs=[visual_qa_image, visual_qa_question], outputs=visual_qa_output) | |
with gr.Tab("Document Question Answering"): | |
document_qa_document = gr.Textbox(label="Document Text") | |
document_qa_question = gr.Textbox(label="Question") | |
document_qa_generate = gr.Button("Answer") | |
document_qa_output = gr.Textbox(label="Answer") | |
document_qa_generate.click(document_qa, inputs=[document_qa_document, document_qa_question], outputs=document_qa_output) | |
with gr.Tab("Image Classification"): | |
image_classification_image = gr.Image(label="Upload Image") | |
image_classification_generate = gr.Button("Classify") | |
image_classification_output = gr.Textbox(label="Classification Result") | |
image_classification_generate.click(image_classification, inputs=image_classification_image, outputs=image_classification_output) | |
with gr.Tab("Object Detection"): | |
object_detection_image = gr.Image(label="Upload Image") | |
object_detection_generate = gr.Button("Detect") | |
object_detection_output = gr.Image(label="Detection Result") | |
object_detection_generate.click(object_detection, inputs=object_detection_image, outputs=object_detection_output) | |
with gr.Tab("Video Classification"): | |
video_classification_video = gr.Video(label="Upload Video") | |
video_classification_generate = gr.Button("Classify") | |
video_classification_output = gr.Textbox(label="Classification Result") | |
video_classification_generate.click(video_classification, inputs=video_classification_video, outputs=video_classification_output) | |
with gr.Tab("Summarization"): | |
summarize_text_text = gr.Textbox(label="Text") | |
summarize_text_generate = gr.Button("Summarize") | |
summarize_text_output = gr.Textbox(label="Summary") | |
summarize_text_generate.click(summarize_text, inputs=summarize_text_text, outputs=summarize_text_output) | |
with gr.Tab("Text-to-Audio"): | |
text_to_audio_text = gr.Textbox(label="Text") | |
text_to_audio_generate = gr.Button("Generate Audio") | |
text_to_audio_output = gr.Audio(label="Generated Audio") | |
text_to_audio_generate.click(text_to_audio, inputs=text_to_audio_text, outputs=text_to_audio_output) | |
with gr.Tab("Audio Classification"): | |
audio_classification_audio = gr.Audio(label="Upload Audio") | |
audio_classification_generate = gr.Button("Classify") | |
audio_classification_output = gr.Textbox(label="Classification Result") | |
audio_classification_generate.click(audio_classification, inputs=audio_classification_audio, outputs=audio_classification_output) | |
# Launch the Gradio interface | |
demo.launch() |