Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -54,12 +54,12 @@ text_to_speech_pipelines = {}
|
|
54 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
55 |
logger.info(f"Device set to use {device}")
|
56 |
|
57 |
-
visual_qa_pipeline = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa"
|
58 |
-
document_qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2"
|
59 |
-
image_classification_pipeline = pipeline("image-classification", model="facebook/deit-base-distilled-patch16-224"
|
60 |
-
object_detection_pipeline = pipeline("object-detection", model="facebook/detr-resnet-50"
|
61 |
-
video_classification_pipeline = pipeline("video-classification", model="facebook/timesformer-base-finetuned-k400"
|
62 |
-
summarization_pipeline = pipeline("summarization", model="facebook/bart-large-cnn"
|
63 |
|
64 |
# Load speaker embeddings for text-to-audio
|
65 |
def load_speaker_embeddings(model_name):
|
@@ -67,26 +67,34 @@ def load_speaker_embeddings(model_name):
|
|
67 |
logger.info("Loading speaker embeddings for SpeechT5")
|
68 |
from datasets import load_dataset
|
69 |
dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
70 |
-
speaker_embeddings = torch.tensor(dataset[7306]["xvector"]).unsqueeze(0)
|
71 |
return speaker_embeddings
|
72 |
return None
|
73 |
|
74 |
# Use a different model for text-to-audio if stabilityai/stable-audio-open-1.0 is not supported
|
75 |
try:
|
76 |
-
text_to_audio_pipeline = pipeline("text-to-audio", model="stabilityai/stable-audio-open-1.0"
|
77 |
except ValueError as e:
|
78 |
logger.error(f"Error loading stabilityai/stable-audio-open-1.0: {e}")
|
79 |
logger.info("Falling back to a different text-to-audio model.")
|
80 |
-
text_to_audio_pipeline = pipeline("text-to-audio", model="microsoft/speecht5_tts"
|
81 |
speaker_embeddings = load_speaker_embeddings("microsoft/speecht5_tts")
|
82 |
|
83 |
-
audio_classification_pipeline = pipeline("audio-classification", model="facebook/wav2vec2-base"
|
84 |
|
85 |
def load_conversational_model(model_name):
|
86 |
if model_name not in conversational_models_loaded:
|
87 |
logger.info(f"Loading conversational model: {model_name}")
|
88 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
conversational_tokenizers[model_name] = tokenizer
|
91 |
conversational_models_loaded[model_name] = model
|
92 |
return conversational_tokenizers[model_name], conversational_models_loaded[model_name]
|
@@ -95,7 +103,7 @@ def chat(model_name, user_input, history=[]):
|
|
95 |
tokenizer, model = load_conversational_model(model_name)
|
96 |
|
97 |
# Encode the input
|
98 |
-
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
|
99 |
|
100 |
# Generate a response
|
101 |
with torch.no_grad():
|
@@ -115,8 +123,11 @@ def generate_image(model_name, prompt):
|
|
115 |
if model_name not in text_to_image_pipelines:
|
116 |
logger.info(f"Loading text-to-image model: {model_name}")
|
117 |
text_to_image_pipelines[model_name] = StableDiffusionPipeline.from_pretrained(
|
118 |
-
text_to_image_models[model_name],
|
119 |
-
|
|
|
|
|
|
|
120 |
pipeline = text_to_image_pipelines[model_name]
|
121 |
image = pipeline(prompt).images[0]
|
122 |
return image
|
@@ -125,7 +136,10 @@ def generate_speech(model_name, text):
|
|
125 |
if model_name not in text_to_speech_pipelines:
|
126 |
logger.info(f"Loading text-to-speech model: {model_name}")
|
127 |
text_to_speech_pipelines[model_name] = pipeline(
|
128 |
-
"text-to-speech",
|
|
|
|
|
|
|
129 |
)
|
130 |
pipeline = text_to_speech_pipelines[model_name]
|
131 |
audio = pipeline(text, speaker_embeddings=speaker_embeddings)
|
|
|
54 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
55 |
logger.info(f"Device set to use {device}")
|
56 |
|
57 |
+
visual_qa_pipeline = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa")
|
58 |
+
document_qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2")
|
59 |
+
image_classification_pipeline = pipeline("image-classification", model="facebook/deit-base-distilled-patch16-224")
|
60 |
+
object_detection_pipeline = pipeline("object-detection", model="facebook/detr-resnet-50")
|
61 |
+
video_classification_pipeline = pipeline("video-classification", model="facebook/timesformer-base-finetuned-k400")
|
62 |
+
summarization_pipeline = pipeline("summarization", model="facebook/bart-large-cnn")
|
63 |
|
64 |
# Load speaker embeddings for text-to-audio
|
65 |
def load_speaker_embeddings(model_name):
|
|
|
67 |
logger.info("Loading speaker embeddings for SpeechT5")
|
68 |
from datasets import load_dataset
|
69 |
dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
70 |
+
speaker_embeddings = torch.tensor(dataset[7306]["xvector"]).unsqueeze(0) # Example speaker
|
71 |
return speaker_embeddings
|
72 |
return None
|
73 |
|
74 |
# Use a different model for text-to-audio if stabilityai/stable-audio-open-1.0 is not supported
|
75 |
try:
|
76 |
+
text_to_audio_pipeline = pipeline("text-to-audio", model="stabilityai/stable-audio-open-1.0")
|
77 |
except ValueError as e:
|
78 |
logger.error(f"Error loading stabilityai/stable-audio-open-1.0: {e}")
|
79 |
logger.info("Falling back to a different text-to-audio model.")
|
80 |
+
text_to_audio_pipeline = pipeline("text-to-audio", model="microsoft/speecht5_tts")
|
81 |
speaker_embeddings = load_speaker_embeddings("microsoft/speecht5_tts")
|
82 |
|
83 |
+
audio_classification_pipeline = pipeline("audio-classification", model="facebook/wav2vec2-base")
|
84 |
|
85 |
def load_conversational_model(model_name):
|
86 |
if model_name not in conversational_models_loaded:
|
87 |
logger.info(f"Loading conversational model: {model_name}")
|
88 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
89 |
+
conversational_models[model_name],
|
90 |
+
use_auth_token=read_token,
|
91 |
+
trust_remote_code=True
|
92 |
+
)
|
93 |
+
model = AutoModelForCausalLM.from_pretrained(
|
94 |
+
conversational_models[model_name],
|
95 |
+
use_auth_token=read_token,
|
96 |
+
trust_remote_code=True
|
97 |
+
)
|
98 |
conversational_tokenizers[model_name] = tokenizer
|
99 |
conversational_models_loaded[model_name] = model
|
100 |
return conversational_tokenizers[model_name], conversational_models_loaded[model_name]
|
|
|
103 |
tokenizer, model = load_conversational_model(model_name)
|
104 |
|
105 |
# Encode the input
|
106 |
+
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
|
107 |
|
108 |
# Generate a response
|
109 |
with torch.no_grad():
|
|
|
123 |
if model_name not in text_to_image_pipelines:
|
124 |
logger.info(f"Loading text-to-image model: {model_name}")
|
125 |
text_to_image_pipelines[model_name] = StableDiffusionPipeline.from_pretrained(
|
126 |
+
text_to_image_models[model_name],
|
127 |
+
use_auth_token=read_token,
|
128 |
+
torch_dtype=torch.float16,
|
129 |
+
device_map="auto"
|
130 |
+
)
|
131 |
pipeline = text_to_image_pipelines[model_name]
|
132 |
image = pipeline(prompt).images[0]
|
133 |
return image
|
|
|
136 |
if model_name not in text_to_speech_pipelines:
|
137 |
logger.info(f"Loading text-to-speech model: {model_name}")
|
138 |
text_to_speech_pipelines[model_name] = pipeline(
|
139 |
+
"text-to-speech",
|
140 |
+
model=text_to_speech_models[model_name],
|
141 |
+
use_auth_token=read_token,
|
142 |
+
device=device
|
143 |
)
|
144 |
pipeline = text_to_speech_pipelines[model_name]
|
145 |
audio = pipeline(text, speaker_embeddings=speaker_embeddings)
|