BarBar288 commited on
Commit
693ffeb
·
verified ·
1 Parent(s): cbaa4b8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +215 -22
app.py CHANGED
@@ -1,26 +1,69 @@
1
  import gradio as gr
2
- from transformers import AutoModelForCausalLM, AutoTokenizer
 
3
  import torch
 
 
 
4
 
5
- # Define a dictionary of model names and their corresponding Hugging Face model IDs
6
- models = {
7
- "GPT-Neo-125M": "EleutherAI/gpt-neo-125M",
8
- "GPT-J-6B": "EleutherAI/gpt-j-6B",
9
- "GPT-NeoX-20B": "EleutherAI/gpt-neox-20b",
10
- "GPT-3.5-Turbo": "gpt2", # Placeholder for illustrative purposes
 
 
11
  }
12
 
13
- # Initialize tokenizers and models
14
- tokenizers = {}
15
- models_loaded = {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
- for model_name, model_id in models.items():
18
- tokenizers[model_name] = AutoTokenizer.from_pretrained(model_id)
19
- models_loaded[model_name] = AutoModelForCausalLM.from_pretrained(model_id)
 
 
 
 
 
 
 
 
 
20
 
21
  def chat(model_name, user_input, history=[]):
22
- tokenizer = tokenizers[model_name]
23
- model = models_loaded[model_name]
24
 
25
  # Encode the input
26
  input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
@@ -39,17 +82,167 @@ def chat(model_name, user_input, history=[]):
39
 
40
  return history, history
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  # Define the Gradio interface
43
  with gr.Blocks() as demo:
44
- gr.Markdown("## Chat with Different Models")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
- model_choice = gr.Dropdown(list(models.keys()), label="Choose a Model")
47
- chatbot = gr.Chatbot(label="Chat")
48
- message = gr.Textbox(label="Message")
49
- submit = gr.Button("Submit")
 
 
50
 
51
- submit.click(chat, inputs=[model_choice, message, chatbot], outputs=[chatbot, chatbot])
52
- message.submit(chat, inputs=[model_choice, message, chatbot], outputs=[chatbot, chatbot])
 
 
 
 
53
 
54
  # Launch the demo
55
  demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
3
+ from diffusers import StableDiffusionPipeline
4
  import torch
5
+ import requests
6
+ from PIL import Image
7
+ import io
8
 
9
+ # Define a dictionary of conversational models
10
+ conversational_models = {
11
+ "Qwen": "Qwen/QwQ-32B",
12
+ "DeepSeek R1": "deepseek-ai/DeepSeek-R1",
13
+ "Perplexity (R1 Post-trained)": "perplexity-ai/r1-1776",
14
+ "Llama-Instruct by Meta": "meta-llama/Llama-3.2-3B-Instruct",
15
+ "Mistral": "mistralai/Mistral-7B-v0.1",
16
+ "Gemma": "google/gemma-2-2b-it",
17
  }
18
 
19
+ # Define a dictionary of Text-to-Image models
20
+ text_to_image_models = {
21
+ "Stable Diffusion 3.5 Large": "stabilityai/stable-diffusion-3.5-large",
22
+ "Stable Diffusion 1.4": "CompVis/stable-diffusion-v1-4",
23
+ "Flux Dev": "black-forest-labs/FLUX.1-dev",
24
+ }
25
+
26
+ # Define a dictionary of Text-to-Speech models
27
+ text_to_speech_models = {
28
+ "Spark TTS": "SparkAudio/Spark-TTS-0.5B",
29
+ }
30
+
31
+ # Initialize tokenizers and models for conversational AI
32
+ conversational_tokenizers = {}
33
+ conversational_models_loaded = {}
34
+
35
+ for model_name, model_id in conversational_models.items():
36
+ conversational_tokenizers[model_name] = AutoTokenizer.from_pretrained(model_id)
37
+ conversational_models_loaded[model_name] = AutoModelForCausalLM.from_pretrained(model_id)
38
+
39
+ # Initialize pipelines for Text-to-Image
40
+ text_to_image_pipelines = {}
41
+
42
+ for model_name, model_id in text_to_image_models.items():
43
+ text_to_image_pipelines[model_name] = StableDiffusionPipeline.from_pretrained(model_id)
44
+
45
+ # Initialize pipelines for Text-to-Speech
46
+ text_to_speech_pipelines = {}
47
+
48
+ for model_name, model_id in text_to_speech_models.items():
49
+ text_to_speech_pipelines[model_name] = pipeline("text-to-speech", model=model_id)
50
 
51
+ # Initialize pipelines for other tasks
52
+ visual_qa_pipeline = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa")
53
+ document_qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2")
54
+ image_classification_pipeline = pipeline("image-classification", model="facebook/detr-resnet-50")
55
+ object_detection_pipeline = pipeline("object-detection", model="facebook/detr-resnet-50")
56
+ video_classification_pipeline = pipeline("video-classification", model="facebook/x3d-l")
57
+ text_to_3d_pipeline = pipeline("text-to-3d", model="CompVis/td2s")
58
+ keypoint_detection_pipeline = pipeline("keypoint-detection", model="facebook/detr-resnet-50")
59
+ translation_pipeline = pipeline("translation_en_to_fr", model="Helsinki-NLP/opus-mt-en-fr")
60
+ summarization_pipeline = pipeline("summarization", model="facebook/bart-large-cnn")
61
+ text_to_audio_pipeline = pipeline("text-to-speech", model="julien-c/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space")
62
+ audio_classification_pipeline = pipeline("audio-classification", model="facebook/wav2vec2-base")
63
 
64
  def chat(model_name, user_input, history=[]):
65
+ tokenizer = conversational_tokenizers[model_name]
66
+ model = conversational_models_loaded[model_name]
67
 
68
  # Encode the input
69
  input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
 
82
 
83
  return history, history
84
 
85
+ def generate_image(model_name, prompt):
86
+ pipeline = text_to_image_pipelines[model_name]
87
+ image = pipeline(prompt).images[0]
88
+ return image
89
+
90
+ def generate_speech(model_name, text):
91
+ pipeline = text_to_speech_pipelines[model_name]
92
+ audio = pipeline(text)
93
+ return audio["audio"]
94
+
95
+ def visual_qa(image, question):
96
+ result = visual_qa_pipeline(image, question)
97
+ return result["answer"]
98
+
99
+ def document_qa(document, question):
100
+ result = document_qa_pipeline(question=question, context=document)
101
+ return result["answer"]
102
+
103
+ def image_classification(image):
104
+ result = image_classification_pipeline(image)
105
+ return result
106
+
107
+ def object_detection(image):
108
+ result = object_detection_pipeline(image)
109
+ return result
110
+
111
+ def video_classification(video):
112
+ result = video_classification_pipeline(video)
113
+ return result
114
+
115
+ def text_to_3d(text):
116
+ result = text_to_3d_pipeline(text)
117
+ return result["image"]
118
+
119
+ def keypoint_detection(image):
120
+ result = keypoint_detection_pipeline(image)
121
+ return result
122
+
123
+ def translate_text(text):
124
+ result = translation_pipeline(text)
125
+ return result[0]["translation_text"]
126
+
127
+ def summarize_text(text):
128
+ result = summarization_pipeline(text)
129
+ return result[0]["summary_text"]
130
+
131
+ def text_to_audio(text):
132
+ result = text_to_audio_pipeline(text)
133
+ return result["audio"]
134
+
135
+ def audio_classification(audio):
136
+ result = audio_classification_pipeline(audio)
137
+ return result
138
+
139
  # Define the Gradio interface
140
  with gr.Blocks() as demo:
141
+ gr.Markdown("## Versatile AI Chatbot and Text-to-X Tasks")
142
+
143
+ with gr.Tab("Conversational AI"):
144
+ conversational_model_choice = gr.Dropdown(list(conversational_models.keys()), label="Choose a Conversational Model")
145
+ conversational_chatbot = gr.Chatbot(label="Chat")
146
+ conversational_message = gr.Textbox(label="Message")
147
+ conversational_submit = gr.Button("Submit")
148
+
149
+ conversational_submit.click(chat, inputs=[conversational_model_choice, conversational_message, conversational_chatbot], outputs=[conversational_chatbot, conversational_chatbot])
150
+ conversational_message.submit(chat, inputs=[conversational_model_choice, conversational_message, conversational_chatbot], outputs=[conversational_chatbot, conversational_chatbot])
151
+
152
+ with gr.Tab("Text-to-Image"):
153
+ text_to_image_model_choice = gr.Dropdown(list(text_to_image_models.keys()), label="Choose a Text-to-Image Model")
154
+ text_to_image_prompt = gr.Textbox(label="Prompt")
155
+ text_to_image_generate = gr.Button("Generate Image")
156
+ text_to_image_output = gr.Image(label="Generated Image")
157
+
158
+ text_to_image_generate.click(generate_image, inputs=[text_to_image_model_choice, text_to_image_prompt], outputs=text_to_image_output)
159
+
160
+ with gr.Tab("Text-to-Speech"):
161
+ text_to_speech_model_choice = gr.Dropdown(list(text_to_speech_models.keys()), label="Choose a Text-to-Speech Model")
162
+ text_to_speech_text = gr.Textbox(label="Text")
163
+ text_to_speech_generate = gr.Button("Generate Speech")
164
+ text_to_speech_output = gr.Audio(label="Generated Speech")
165
+
166
+ text_to_speech_generate.click(generate_speech, inputs=[text_to_speech_model_choice, text_to_speech_text], outputs=text_to_speech_output)
167
+
168
+ with gr.Tab("Visual Question Answering"):
169
+ visual_qa_image = gr.Image(label="Upload Image")
170
+ visual_qa_question = gr.Textbox(label="Question")
171
+ visual_qa_generate = gr.Button("Answer")
172
+ visual_qa_output = gr.Textbox(label="Answer")
173
+
174
+ visual_qa_generate.click(visual_qa, inputs=[visual_qa_image, visual_qa_question], outputs=visual_qa_output)
175
+
176
+ with gr.Tab("Document Question Answering"):
177
+ document_qa_document = gr.Textbox(label="Document Text")
178
+ document_qa_question = gr.Textbox(label="Question")
179
+ document_qa_generate = gr.Button("Answer")
180
+ document_qa_output = gr.Textbox(label="Answer")
181
+
182
+ document_qa_generate.click(document_qa, inputs=[document_qa_document, document_qa_question], outputs=document_qa_output)
183
+
184
+ with gr.Tab("Image Classification"):
185
+ image_classification_image = gr.Image(label="Upload Image")
186
+ image_classification_generate = gr.Button("Classify")
187
+ image_classification_output = gr.Textbox(label="Classification Result")
188
+
189
+ image_classification_generate.click(image_classification, inputs=image_classification_image, outputs=image_classification_output)
190
+
191
+ with gr.Tab("Object Detection"):
192
+ object_detection_image = gr.Image(label="Upload Image")
193
+ object_detection_generate = gr.Button("Detect")
194
+ object_detection_output = gr.Image(label="Detection Result")
195
+
196
+ object_detection_generate.click(object_detection, inputs=object_detection_image, outputs=object_detection_output)
197
+
198
+ with gr.Tab("Video Classification"):
199
+ video_classification_video = gr.Video(label="Upload Video")
200
+ video_classification_generate = gr.Button("Classify")
201
+ video_classification_output = gr.Textbox(label="Classification Result")
202
+
203
+ video_classification_generate.click(video_classification, inputs=video_classification_video, outputs=video_classification_output)
204
+
205
+ with gr.Tab("Text-to-3D"):
206
+ text_to_3d_text = gr.Textbox(label="Text")
207
+ text_to_3d_generate = gr.Button("Generate 3D")
208
+ text_to_3d_output = gr.Image(label="3D Model")
209
+
210
+ text_to_3d_generate.click(text_to_3d, inputs=text_to_3d_text, outputs=text_to_3d_output)
211
+
212
+ with gr.Tab("Keypoint Detection"):
213
+ keypoint_detection_image = gr.Image(label="Upload Image")
214
+ keypoint_detection_generate = gr.Button("Detect Keypoints")
215
+ keypoint_detection_output = gr.Image(label="Keypoint Detection Result")
216
+
217
+ keypoint_detection_generate.click(keypoint_detection, inputs=keypoint_detection_image, outputs=keypoint_detection_output)
218
+
219
+ with gr.Tab("Translation"):
220
+ translate_text_text = gr.Textbox(label="Text")
221
+ translate_text_generate = gr.Button("Translate")
222
+ translate_text_output = gr.Textbox(label="Translated Text")
223
+
224
+ translate_text_generate.click(translate_text, inputs=translate_text_text, outputs=translate_text_output)
225
+
226
+ with gr.Tab("Summarization"):
227
+ summarize_text_text = gr.Textbox(label="Text")
228
+ summarize_text_generate = gr.Button("Summarize")
229
+ summarize_text_output = gr.Textbox(label="Summary")
230
+
231
+ summarize_text_generate.click(summarize_text, inputs=summarize_text_text, outputs=summarize_text_output)
232
 
233
+ with gr.Tab("Text-to-Audio"):
234
+ text_to_audio_text = gr.Textbox(label="Text")
235
+ text_to_audio_generate = gr.Button("Generate Audio")
236
+ text_to_audio_output = gr.Audio(label="Generated Audio")
237
+
238
+ text_to_audio_generate.click(text_to_audio, inputs=text_to_audio_text, outputs=text_to_audio_output)
239
 
240
+ with gr.Tab("Audio Classification"):
241
+ audio_classification_audio = gr.Audio(label="Upload Audio")
242
+ audio_classification_generate = gr.Button("Classify")
243
+ audio_classification_output = gr.Textbox(label="Classification Result")
244
+
245
+ audio_classification_generate.click(audio_classification, inputs=audio_classification_audio, outputs=audio_classification_output)
246
 
247
  # Launch the demo
248
  demo.launch()