BarBar288 commited on
Commit
f2b389b
·
verified ·
1 Parent(s): 88eb33f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -9
app.py CHANGED
@@ -10,6 +10,8 @@ import os
10
 
11
  # Read the Hugging Face access token from the environment variable
12
  read_token = os.getenv('AccToken')
 
 
13
  login(read_token)
14
 
15
  # Define a dictionary of conversational models
@@ -19,7 +21,7 @@ conversational_models = {
19
  "Perplexity (R1 Post-trained)": "perplexity-ai/r1-1776",
20
  "Llama-Instruct by Meta": "meta-llama/Llama-3.2-3B-Instruct",
21
  "Mistral": "mistralai/Mistral-7B-v0.1",
22
- "Gemma": "google/gemma-3-27b-it",
23
  }
24
 
25
  # Define a dictionary of Text-to-Image models
@@ -45,17 +47,26 @@ text_to_image_pipelines = {}
45
  text_to_speech_pipelines = {}
46
 
47
  # Initialize pipelines for other tasks
48
- visual_qa_pipeline = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa")
49
- document_qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2")
50
- image_classification_pipeline = pipeline("image-classification", model="facebook/detr-resnet-50") # This will be replaced
51
- object_detection_pipeline = pipeline("object-detection", model="facebook/detr-resnet-50")
52
- video_classification_pipeline = pipeline("video-classification", model="facebook/timesformer-base-finetuned-k400")
53
- summarization_pipeline = pipeline("summarization", model="facebook/bart-large-cnn")
54
- text_to_audio_pipeline = pipeline("text-to-audio", model="stabilityai/stable-audio-open-1.0")
55
- audio_classification_pipeline = pipeline("audio-classification", model="facebook/wav2vec2-base")
 
 
 
 
 
 
 
 
56
 
57
  def load_conversational_model(model_name):
58
  if model_name not in conversational_models_loaded:
 
59
  tokenizer = AutoTokenizer.from_pretrained(conversational_models[model_name], use_auth_token=read_token)
60
  model = AutoModelForCausalLM.from_pretrained(conversational_models[model_name], use_auth_token=read_token)
61
  conversational_tokenizers[model_name] = tokenizer
@@ -84,6 +95,7 @@ def chat(model_name, user_input, history=[]):
84
 
85
  def generate_image(model_name, prompt):
86
  if model_name not in text_to_image_pipelines:
 
87
  text_to_image_pipelines[model_name] = StableDiffusionPipeline.from_pretrained(
88
  text_to_image_models[model_name], use_auth_token=read_token
89
  )
@@ -93,6 +105,7 @@ def generate_image(model_name, prompt):
93
 
94
  def generate_speech(model_name, text):
95
  if model_name not in text_to_speech_pipelines:
 
96
  text_to_speech_pipelines[model_name] = pipeline(
97
  "text-to-speech", model=text_to_speech_models[model_name], use_auth_token=read_token
98
  )
 
10
 
11
  # Read the Hugging Face access token from the environment variable
12
  read_token = os.getenv('AccToken')
13
+ if not read_token:
14
+ raise ValueError("Hugging Face access token not found. Please set the AccToken environment variable.")
15
  login(read_token)
16
 
17
  # Define a dictionary of conversational models
 
21
  "Perplexity (R1 Post-trained)": "perplexity-ai/r1-1776",
22
  "Llama-Instruct by Meta": "meta-llama/Llama-3.2-3B-Instruct",
23
  "Mistral": "mistralai/Mistral-7B-v0.1",
24
+ "Gemma": "google/gemma-2-2b-it",
25
  }
26
 
27
  # Define a dictionary of Text-to-Image models
 
47
  text_to_speech_pipelines = {}
48
 
49
  # Initialize pipelines for other tasks
50
+ visual_qa_pipeline = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa", use_auth_token=read_token)
51
+ document_qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2", use_auth_token=read_token)
52
+ image_classification_pipeline = pipeline("image-classification", model="facebook/detr-resnet-50", use_auth_token=read_token)
53
+ object_detection_pipeline = pipeline("object-detection", model="facebook/detr-resnet-50", use_auth_token=read_token)
54
+ video_classification_pipeline = pipeline("video-classification", model="facebook/timesformer-base-finetuned-k400", use_auth_token=read_token)
55
+ summarization_pipeline = pipeline("summarization", model="facebook/bart-large-cnn", use_auth_token=read_token)
56
+
57
+ # Use a different model for text-to-audio if stabilityai/stable-audio-open-1.0 is not supported
58
+ try:
59
+ text_to_audio_pipeline = pipeline("text-to-audio", model="stabilityai/stable-audio-open-1.0", use_auth_token=read_token)
60
+ except ValueError as e:
61
+ print(f"Error loading stabilityai/stable-audio-open-1.0: {e}")
62
+ print("Falling back to a different text-to-audio model.")
63
+ text_to_audio_pipeline = pipeline("text-to-audio", model="microsoft/speecht5_tts", use_auth_token=read_token)
64
+
65
+ audio_classification_pipeline = pipeline("audio-classification", model="facebook/wav2vec2-base", use_auth_token=read_token)
66
 
67
  def load_conversational_model(model_name):
68
  if model_name not in conversational_models_loaded:
69
+ print(f"Loading conversational model: {model_name}")
70
  tokenizer = AutoTokenizer.from_pretrained(conversational_models[model_name], use_auth_token=read_token)
71
  model = AutoModelForCausalLM.from_pretrained(conversational_models[model_name], use_auth_token=read_token)
72
  conversational_tokenizers[model_name] = tokenizer
 
95
 
96
  def generate_image(model_name, prompt):
97
  if model_name not in text_to_image_pipelines:
98
+ print(f"Loading text-to-image model: {model_name}")
99
  text_to_image_pipelines[model_name] = StableDiffusionPipeline.from_pretrained(
100
  text_to_image_models[model_name], use_auth_token=read_token
101
  )
 
105
 
106
  def generate_speech(model_name, text):
107
  if model_name not in text_to_speech_pipelines:
108
+ print(f"Loading text-to-speech model: {model_name}")
109
  text_to_speech_pipelines[model_name] = pipeline(
110
  "text-to-speech", model=text_to_speech_models[model_name], use_auth_token=read_token
111
  )