Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,8 @@ import os
|
|
10 |
|
11 |
# Read the Hugging Face access token from the environment variable
|
12 |
read_token = os.getenv('AccToken')
|
|
|
|
|
13 |
login(read_token)
|
14 |
|
15 |
# Define a dictionary of conversational models
|
@@ -19,7 +21,7 @@ conversational_models = {
|
|
19 |
"Perplexity (R1 Post-trained)": "perplexity-ai/r1-1776",
|
20 |
"Llama-Instruct by Meta": "meta-llama/Llama-3.2-3B-Instruct",
|
21 |
"Mistral": "mistralai/Mistral-7B-v0.1",
|
22 |
-
"Gemma": "google/gemma-
|
23 |
}
|
24 |
|
25 |
# Define a dictionary of Text-to-Image models
|
@@ -45,17 +47,26 @@ text_to_image_pipelines = {}
|
|
45 |
text_to_speech_pipelines = {}
|
46 |
|
47 |
# Initialize pipelines for other tasks
|
48 |
-
visual_qa_pipeline = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa")
|
49 |
-
document_qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2")
|
50 |
-
image_classification_pipeline = pipeline("image-classification", model="facebook/detr-resnet-50")
|
51 |
-
object_detection_pipeline = pipeline("object-detection", model="facebook/detr-resnet-50")
|
52 |
-
video_classification_pipeline = pipeline("video-classification", model="facebook/timesformer-base-finetuned-k400")
|
53 |
-
summarization_pipeline = pipeline("summarization", model="facebook/bart-large-cnn")
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
def load_conversational_model(model_name):
|
58 |
if model_name not in conversational_models_loaded:
|
|
|
59 |
tokenizer = AutoTokenizer.from_pretrained(conversational_models[model_name], use_auth_token=read_token)
|
60 |
model = AutoModelForCausalLM.from_pretrained(conversational_models[model_name], use_auth_token=read_token)
|
61 |
conversational_tokenizers[model_name] = tokenizer
|
@@ -84,6 +95,7 @@ def chat(model_name, user_input, history=[]):
|
|
84 |
|
85 |
def generate_image(model_name, prompt):
|
86 |
if model_name not in text_to_image_pipelines:
|
|
|
87 |
text_to_image_pipelines[model_name] = StableDiffusionPipeline.from_pretrained(
|
88 |
text_to_image_models[model_name], use_auth_token=read_token
|
89 |
)
|
@@ -93,6 +105,7 @@ def generate_image(model_name, prompt):
|
|
93 |
|
94 |
def generate_speech(model_name, text):
|
95 |
if model_name not in text_to_speech_pipelines:
|
|
|
96 |
text_to_speech_pipelines[model_name] = pipeline(
|
97 |
"text-to-speech", model=text_to_speech_models[model_name], use_auth_token=read_token
|
98 |
)
|
|
|
10 |
|
11 |
# Read the Hugging Face access token from the environment variable
|
12 |
read_token = os.getenv('AccToken')
|
13 |
+
if not read_token:
|
14 |
+
raise ValueError("Hugging Face access token not found. Please set the AccToken environment variable.")
|
15 |
login(read_token)
|
16 |
|
17 |
# Define a dictionary of conversational models
|
|
|
21 |
"Perplexity (R1 Post-trained)": "perplexity-ai/r1-1776",
|
22 |
"Llama-Instruct by Meta": "meta-llama/Llama-3.2-3B-Instruct",
|
23 |
"Mistral": "mistralai/Mistral-7B-v0.1",
|
24 |
+
"Gemma": "google/gemma-2-2b-it",
|
25 |
}
|
26 |
|
27 |
# Define a dictionary of Text-to-Image models
|
|
|
47 |
text_to_speech_pipelines = {}
|
48 |
|
49 |
# Initialize pipelines for other tasks
|
50 |
+
visual_qa_pipeline = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa", use_auth_token=read_token)
|
51 |
+
document_qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2", use_auth_token=read_token)
|
52 |
+
image_classification_pipeline = pipeline("image-classification", model="facebook/detr-resnet-50", use_auth_token=read_token)
|
53 |
+
object_detection_pipeline = pipeline("object-detection", model="facebook/detr-resnet-50", use_auth_token=read_token)
|
54 |
+
video_classification_pipeline = pipeline("video-classification", model="facebook/timesformer-base-finetuned-k400", use_auth_token=read_token)
|
55 |
+
summarization_pipeline = pipeline("summarization", model="facebook/bart-large-cnn", use_auth_token=read_token)
|
56 |
+
|
57 |
+
# Use a different model for text-to-audio if stabilityai/stable-audio-open-1.0 is not supported
|
58 |
+
try:
|
59 |
+
text_to_audio_pipeline = pipeline("text-to-audio", model="stabilityai/stable-audio-open-1.0", use_auth_token=read_token)
|
60 |
+
except ValueError as e:
|
61 |
+
print(f"Error loading stabilityai/stable-audio-open-1.0: {e}")
|
62 |
+
print("Falling back to a different text-to-audio model.")
|
63 |
+
text_to_audio_pipeline = pipeline("text-to-audio", model="microsoft/speecht5_tts", use_auth_token=read_token)
|
64 |
+
|
65 |
+
audio_classification_pipeline = pipeline("audio-classification", model="facebook/wav2vec2-base", use_auth_token=read_token)
|
66 |
|
67 |
def load_conversational_model(model_name):
|
68 |
if model_name not in conversational_models_loaded:
|
69 |
+
print(f"Loading conversational model: {model_name}")
|
70 |
tokenizer = AutoTokenizer.from_pretrained(conversational_models[model_name], use_auth_token=read_token)
|
71 |
model = AutoModelForCausalLM.from_pretrained(conversational_models[model_name], use_auth_token=read_token)
|
72 |
conversational_tokenizers[model_name] = tokenizer
|
|
|
95 |
|
96 |
def generate_image(model_name, prompt):
|
97 |
if model_name not in text_to_image_pipelines:
|
98 |
+
print(f"Loading text-to-image model: {model_name}")
|
99 |
text_to_image_pipelines[model_name] = StableDiffusionPipeline.from_pretrained(
|
100 |
text_to_image_models[model_name], use_auth_token=read_token
|
101 |
)
|
|
|
105 |
|
106 |
def generate_speech(model_name, text):
|
107 |
if model_name not in text_to_speech_pipelines:
|
108 |
+
print(f"Loading text-to-speech model: {model_name}")
|
109 |
text_to_speech_pipelines[model_name] = pipeline(
|
110 |
"text-to-speech", model=text_to_speech_models[model_name], use_auth_token=read_token
|
111 |
)
|