Spaces:
Runtime error
Runtime error
File size: 24,256 Bytes
5d32408 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 |
import argparse
import html
import json
import os
import random
import re
from functools import partial
from glob import glob
import cv2
import numpy as np
import pandas as pd
import torchvision
from tqdm import tqdm
from .utils import IMG_EXTENSIONS
tqdm.pandas()
try:
from pandarallel import pandarallel
PANDA_USE_PARALLEL = True
except ImportError:
PANDA_USE_PARALLEL = False
def apply(df, func, **kwargs):
if PANDA_USE_PARALLEL:
return df.parallel_apply(func, **kwargs)
return df.progress_apply(func, **kwargs)
TRAIN_COLUMNS = ["path", "text", "num_frames", "fps", "height", "width", "aspect_ratio", "resolution", "text_len"]
# ======================================================
# --info
# ======================================================
def get_video_length(cap, method="header"):
assert method in ["header", "set"]
if method == "header":
length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
else:
cap.set(cv2.CAP_PROP_POS_AVI_RATIO, 1)
length = int(cap.get(cv2.CAP_PROP_POS_FRAMES))
return length
def get_info(path):
try:
ext = os.path.splitext(path)[1].lower()
if ext in IMG_EXTENSIONS:
im = cv2.imread(path)
if im is None:
return 0, 0, 0, np.nan, np.nan
height, width = im.shape[:2]
num_frames, fps = 1, np.nan
else:
cap = cv2.VideoCapture(path)
num_frames, height, width, fps = (
get_video_length(cap, method="header"),
int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)),
int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
float(cap.get(cv2.CAP_PROP_FPS)),
)
hw = height * width
aspect_ratio = height / width if width > 0 else np.nan
return num_frames, height, width, aspect_ratio, fps, hw
except:
return 0, 0, 0, np.nan, np.nan, np.nan
def get_video_info(path):
try:
vframes, _, _ = torchvision.io.read_video(filename=path, pts_unit="sec", output_format="TCHW")
num_frames, height, width = vframes.shape[0], vframes.shape[2], vframes.shape[3]
aspect_ratio = height / width
fps = np.nan
resolution = height * width
return num_frames, height, width, aspect_ratio, fps, resolution
except:
return 0, 0, 0, np.nan, np.nan, np.nan
# ======================================================
# --refine-llm-caption
# ======================================================
LLAVA_PREFIX = [
"The video shows",
"The video captures",
"The video features",
"The video depicts",
"The video presents",
"The video features",
"The video is ",
"In the video,",
"The image shows",
"The image captures",
"The image features",
"The image depicts",
"The image presents",
"The image features",
"The image is ",
"The image portrays",
"In the image,",
]
def remove_caption_prefix(caption):
for prefix in LLAVA_PREFIX:
if caption.startswith(prefix) or caption.startswith(prefix.lower()):
caption = caption[len(prefix) :].strip()
if caption[0].islower():
caption = caption[0].upper() + caption[1:]
return caption
return caption
# ======================================================
# --merge-cmotion
# ======================================================
CMOTION_TEXT = {
"static": "The camera is static.",
"dynamic": "The camera is moving.",
"unknown": None,
"zoom in": "The camera is zooming in.",
"zoom out": "The camera is zooming out.",
"pan left": "The camera is panning left.",
"pan right": "The camera is panning right.",
"tilt up": "The camera is tilting up.",
"tilt down": "The camera is tilting down.",
"pan/tilt": "The camera is panning.",
}
CMOTION_PROBS = {
# hard-coded probabilities
"static": 1.0,
"dynamic": 1.0,
"unknown": 0.0,
"zoom in": 1.0,
"zoom out": 1.0,
"pan left": 1.0,
"pan right": 1.0,
"tilt up": 1.0,
"tilt down": 1.0,
"pan/tilt": 1.0,
}
def merge_cmotion(caption, cmotion):
text = CMOTION_TEXT[cmotion]
prob = CMOTION_PROBS[cmotion]
if text is not None and random.random() < prob:
caption = f"{caption} {text}"
return caption
# ======================================================
# --lang
# ======================================================
def build_lang_detector(lang_to_detect):
from lingua import Language, LanguageDetectorBuilder
lang_dict = dict(en=Language.ENGLISH)
assert lang_to_detect in lang_dict
valid_lang = lang_dict[lang_to_detect]
detector = LanguageDetectorBuilder.from_all_spoken_languages().with_low_accuracy_mode().build()
def detect_lang(caption):
confidence_values = detector.compute_language_confidence_values(caption)
confidence = [x.language for x in confidence_values[:5]]
if valid_lang not in confidence:
return False
return True
return detect_lang
# ======================================================
# --clean-caption
# ======================================================
def basic_clean(text):
import ftfy
text = ftfy.fix_text(text)
text = html.unescape(html.unescape(text))
return text.strip()
BAD_PUNCT_REGEX = re.compile(
r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}"
) # noqa
def clean_caption(caption):
import urllib.parse as ul
from bs4 import BeautifulSoup
caption = str(caption)
caption = ul.unquote_plus(caption)
caption = caption.strip().lower()
caption = re.sub("<person>", "person", caption)
# urls:
caption = re.sub(
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
caption = re.sub(
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
# html:
caption = BeautifulSoup(caption, features="html.parser").text
# @<nickname>
caption = re.sub(r"@[\w\d]+\b", "", caption)
# 31C0—31EF CJK Strokes
# 31F0—31FF Katakana Phonetic Extensions
# 3200—32FF Enclosed CJK Letters and Months
# 3300—33FF CJK Compatibility
# 3400—4DBF CJK Unified Ideographs Extension A
# 4DC0—4DFF Yijing Hexagram Symbols
# 4E00—9FFF CJK Unified Ideographs
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
#######################################################
# все виды тире / all types of dash --> "-"
caption = re.sub(
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
"-",
caption,
)
# кавычки к одному стандарту
caption = re.sub(r"[`´«»“”¨]", '"', caption)
caption = re.sub(r"[‘’]", "'", caption)
# "
caption = re.sub(r""?", "", caption)
# &
caption = re.sub(r"&", "", caption)
# ip adresses:
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
# article ids:
caption = re.sub(r"\d:\d\d\s+$", "", caption)
# \n
caption = re.sub(r"\\n", " ", caption)
# "#123"
caption = re.sub(r"#\d{1,3}\b", "", caption)
# "#12345.."
caption = re.sub(r"#\d{5,}\b", "", caption)
# "123456.."
caption = re.sub(r"\b\d{6,}\b", "", caption)
# filenames:
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
#
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
caption = re.sub(BAD_PUNCT_REGEX, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
# this-is-my-cute-cat / this_is_my_cute_cat
regex2 = re.compile(r"(?:\-|\_)")
if len(re.findall(regex2, caption)) > 3:
caption = re.sub(regex2, " ", caption)
caption = basic_clean(caption)
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
caption = re.sub(r"\s+", " ", caption)
caption.strip()
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
caption = re.sub(r"^\.\S+$", "", caption)
return caption.strip()
def text_preprocessing(text, use_text_preprocessing: bool = True):
if use_text_preprocessing:
# The exact text cleaning as was in the training stage:
text = clean_caption(text)
text = clean_caption(text)
return text
else:
return text.lower().strip()
# ======================================================
# load caption
# ======================================================
def load_caption(path, ext):
try:
assert ext in ["json"]
json_path = path.split(".")[0] + ".json"
with open(json_path, "r") as f:
data = json.load(f)
caption = data["caption"]
return caption
except:
return ""
# ======================================================
# read & write
# ======================================================
def read_file(input_path):
if input_path.endswith(".csv"):
return pd.read_csv(input_path)
elif input_path.endswith(".parquet"):
return pd.read_parquet(input_path)
else:
raise NotImplementedError(f"Unsupported file format: {input_path}")
def save_file(data, output_path):
output_dir = os.path.dirname(output_path)
if not os.path.exists(output_dir) and output_dir != "":
os.makedirs(output_dir)
if output_path.endswith(".csv"):
return data.to_csv(output_path, index=False)
elif output_path.endswith(".parquet"):
return data.to_parquet(output_path, index=False)
else:
raise NotImplementedError(f"Unsupported file format: {output_path}")
def read_data(input_paths):
data = []
input_name = ""
input_list = []
for input_path in input_paths:
input_list.extend(glob(input_path))
print("Input files:", input_list)
for i, input_path in enumerate(input_list):
assert os.path.exists(input_path)
data.append(read_file(input_path))
input_name += os.path.basename(input_path).split(".")[0]
if i != len(input_list) - 1:
input_name += "+"
print(f"Loaded {len(data[-1])} samples from {input_path}.")
data = pd.concat(data, ignore_index=True, sort=False)
print(f"Total number of samples: {len(data)}.")
return data, input_name
# ======================================================
# main
# ======================================================
# To add a new method, register it in the main, parse_args, and get_output_path functions, and update the doc at /tools/datasets/README.md#documentation
def main(args):
# reading data
data, input_name = read_data(args.input)
# make difference
if args.difference is not None:
data_diff = pd.read_csv(args.difference)
print(f"Difference csv contains {len(data_diff)} samples.")
data = data[~data["path"].isin(data_diff["path"])]
input_name += f"-{os.path.basename(args.difference).split('.')[0]}"
print(f"Filtered number of samples: {len(data)}.")
# make intersection
if args.intersection is not None:
data_new = pd.read_csv(args.intersection)
print(f"Intersection csv contains {len(data_new)} samples.")
cols_to_use = data_new.columns.difference(data.columns)
cols_to_use = cols_to_use.insert(0, "path")
data = pd.merge(data, data_new[cols_to_use], on="path", how="inner")
print(f"Intersection number of samples: {len(data)}.")
# train columns
if args.train_column:
all_columns = data.columns
columns_to_drop = all_columns.difference(TRAIN_COLUMNS)
data = data.drop(columns=columns_to_drop)
# get output path
output_path = get_output_path(args, input_name)
# preparation
if args.lang is not None:
detect_lang = build_lang_detector(args.lang)
if args.count_num_token == "t5":
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("DeepFloyd/t5-v1_1-xxl")
# IO-related
if args.load_caption is not None:
assert "path" in data.columns
data["text"] = apply(data["path"], load_caption, ext=args.load_caption)
if args.info:
info = apply(data["path"], get_info)
(
data["num_frames"],
data["height"],
data["width"],
data["aspect_ratio"],
data["fps"],
data["resolution"],
) = zip(*info)
if args.video_info:
info = apply(data["path"], get_video_info)
(
data["num_frames"],
data["height"],
data["width"],
data["aspect_ratio"],
data["fps"],
data["resolution"],
) = zip(*info)
if args.ext:
assert "path" in data.columns
data = data[apply(data["path"], os.path.exists)]
# filtering
if args.remove_url:
assert "text" in data.columns
data = data[~data["text"].str.contains(r"(?P<url>https?://[^\s]+)", regex=True)]
if args.lang is not None:
assert "text" in data.columns
data = data[data["text"].progress_apply(detect_lang)] # cannot parallelize
if args.remove_empty_caption:
assert "text" in data.columns
data = data[data["text"].str.len() > 0]
data = data[~data["text"].isna()]
if args.remove_path_duplication:
assert "path" in data.columns
data = data.drop_duplicates(subset=["path"])
# processing
if args.relpath is not None:
data["path"] = apply(data["path"], lambda x: os.path.relpath(x, args.relpath))
if args.abspath is not None:
data["path"] = apply(data["path"], lambda x: os.path.join(args.abspath, x))
if args.merge_cmotion:
data["text"] = apply(data, lambda x: merge_cmotion(x["text"], x["cmotion"]), axis=1)
if args.refine_llm_caption:
assert "text" in data.columns
data["text"] = apply(data["text"], remove_caption_prefix)
if args.clean_caption:
assert "text" in data.columns
data["text"] = apply(
data["text"],
partial(text_preprocessing, use_text_preprocessing=True),
)
if args.count_num_token is not None:
assert "text" in data.columns
data["text_len"] = apply(data["text"], lambda x: len(tokenizer(x)["input_ids"]))
# sort
if args.sort is not None:
data = data.sort_values(by=args.sort, ascending=False)
if args.sort_ascending is not None:
data = data.sort_values(by=args.sort_ascending, ascending=True)
# filtering
if args.remove_empty_caption:
assert "text" in data.columns
data = data[data["text"].str.len() > 0]
data = data[~data["text"].isna()]
if args.fmin is not None:
assert "num_frames" in data.columns
data = data[data["num_frames"] >= args.fmin]
if args.fmax is not None:
assert "num_frames" in data.columns
data = data[data["num_frames"] <= args.fmax]
if args.hwmax is not None:
if "resolution" not in data.columns:
height = data["height"]
width = data["width"]
data["resolution"] = height * width
data = data[data["resolution"] <= args.hwmax]
if args.aesmin is not None:
assert "aes" in data.columns
data = data[data["aes"] >= args.aesmin]
if args.matchmin is not None:
assert "match" in data.columns
data = data[data["match"] >= args.matchmin]
if args.flowmin is not None:
assert "flow" in data.columns
data = data[data["flow"] >= args.flowmin]
if args.remove_text_duplication:
data = data.drop_duplicates(subset=["text"], keep="first")
print(f"Filtered number of samples: {len(data)}.")
# shard data
if args.shard is not None:
sharded_data = np.array_split(data, args.shard)
for i in range(args.shard):
output_path_part = output_path.split(".")
output_path_s = ".".join(output_path_part[:-1]) + f"_{i}." + output_path_part[-1]
save_file(sharded_data[i], output_path_s)
print(f"Saved {len(sharded_data[i])} samples to {output_path_s}.")
else:
save_file(data, output_path)
print(f"Saved {len(data)} samples to {output_path}.")
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("input", type=str, nargs="+", help="path to the input dataset")
parser.add_argument("--output", type=str, default=None, help="output path")
parser.add_argument("--format", type=str, default="csv", help="output format", choices=["csv", "parquet"])
parser.add_argument("--disable-parallel", action="store_true", help="disable parallel processing")
parser.add_argument("--num-workers", type=int, default=None, help="number of workers")
parser.add_argument("--seed", type=int, default=None, help="random seed")
# special case
parser.add_argument("--shard", type=int, default=None, help="shard the dataset")
parser.add_argument("--sort", type=str, default=None, help="sort by column")
parser.add_argument("--sort-ascending", type=str, default=None, help="sort by column (ascending order)")
parser.add_argument("--difference", type=str, default=None, help="get difference from the dataset")
parser.add_argument(
"--intersection", type=str, default=None, help="keep the paths in csv from the dataset and merge columns"
)
parser.add_argument("--train-column", action="store_true", help="only keep the train column")
# IO-related
parser.add_argument("--info", action="store_true", help="get the basic information of each video and image")
parser.add_argument("--video-info", action="store_true", help="get the basic information of each video")
parser.add_argument("--ext", action="store_true", help="check if the file exists")
parser.add_argument(
"--load-caption", type=str, default=None, choices=["json", "txt"], help="load the caption from json or txt"
)
# path processing
parser.add_argument("--relpath", type=str, default=None, help="modify the path to relative path by root given")
parser.add_argument("--abspath", type=str, default=None, help="modify the path to absolute path by root given")
# caption filtering
parser.add_argument(
"--remove-empty-caption",
action="store_true",
help="remove rows with empty caption",
)
parser.add_argument("--remove-url", action="store_true", help="remove rows with url in caption")
parser.add_argument("--lang", type=str, default=None, help="remove rows with other language")
parser.add_argument("--remove-path-duplication", action="store_true", help="remove rows with duplicated path")
parser.add_argument("--remove-text-duplication", action="store_true", help="remove rows with duplicated caption")
# caption processing
parser.add_argument("--refine-llm-caption", action="store_true", help="modify the caption generated by LLM")
parser.add_argument(
"--clean-caption", action="store_true", help="modify the caption according to T5 pipeline to suit training"
)
parser.add_argument("--merge-cmotion", action="store_true", help="merge the camera motion to the caption")
parser.add_argument(
"--count-num-token", type=str, choices=["t5"], default=None, help="Count the number of tokens in the caption"
)
# score filtering
parser.add_argument("--fmin", type=int, default=None, help="filter the dataset by minimum number of frames")
parser.add_argument("--fmax", type=int, default=None, help="filter the dataset by maximum number of frames")
parser.add_argument("--hwmax", type=int, default=None, help="filter the dataset by maximum resolution")
parser.add_argument("--aesmin", type=float, default=None, help="filter the dataset by minimum aes score")
parser.add_argument("--matchmin", type=float, default=None, help="filter the dataset by minimum match score")
parser.add_argument("--flowmin", type=float, default=None, help="filter the dataset by minimum flow score")
return parser.parse_args()
def get_output_path(args, input_name):
if args.output is not None:
return args.output
name = input_name
dir_path = os.path.dirname(args.input[0])
# sort
if args.sort is not None:
assert args.sort_ascending is None
name += "_sort"
if args.sort_ascending is not None:
assert args.sort is None
name += "_sort"
# IO-related
# for IO-related, the function must be wrapped in try-except
if args.info:
name += "_info"
if args.video_info:
name += "_vinfo"
if args.ext:
name += "_ext"
if args.load_caption:
name += f"_load{args.load_caption}"
# path processing
if args.relpath is not None:
name += "_relpath"
if args.abspath is not None:
name += "_abspath"
# caption filtering
if args.remove_empty_caption:
name += "_noempty"
if args.remove_url:
name += "_nourl"
if args.lang is not None:
name += f"_{args.lang}"
if args.remove_path_duplication:
name += "_noduppath"
if args.remove_text_duplication:
name += "_noduptext"
# caption processing
if args.refine_llm_caption:
name += "_llm"
if args.clean_caption:
name += "_clean"
if args.merge_cmotion:
name += "_cmcaption"
if args.count_num_token:
name += "_ntoken"
# score filtering
if args.fmin is not None:
name += f"_fmin{args.fmin}"
if args.fmax is not None:
name += f"_fmax{args.fmax}"
if args.hwmax is not None:
name += f"_hwmax{args.hwmax}"
if args.aesmin is not None:
name += f"_aesmin{args.aesmin}"
if args.matchmin is not None:
name += f"_matchmin{args.matchmin}"
if args.flowmin is not None:
name += f"_flowmin{args.flowmin}"
output_path = os.path.join(dir_path, f"{name}.{args.format}")
return output_path
if __name__ == "__main__":
args = parse_args()
if args.disable_parallel:
PANDA_USE_PARALLEL = False
if PANDA_USE_PARALLEL:
if args.num_workers is not None:
pandarallel.initialize(nb_workers=args.num_workers, progress_bar=True)
else:
pandarallel.initialize(progress_bar=True)
if args.seed is not None:
random.seed(args.seed)
np.random.seed(args.seed)
main(args)
|