File size: 24,256 Bytes
5d32408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
import argparse
import html
import json
import os
import random
import re
from functools import partial
from glob import glob

import cv2
import numpy as np
import pandas as pd
import torchvision
from tqdm import tqdm

from .utils import IMG_EXTENSIONS

tqdm.pandas()

try:
    from pandarallel import pandarallel

    PANDA_USE_PARALLEL = True
except ImportError:
    PANDA_USE_PARALLEL = False


def apply(df, func, **kwargs):
    if PANDA_USE_PARALLEL:
        return df.parallel_apply(func, **kwargs)
    return df.progress_apply(func, **kwargs)


TRAIN_COLUMNS = ["path", "text", "num_frames", "fps", "height", "width", "aspect_ratio", "resolution", "text_len"]

# ======================================================
# --info
# ======================================================


def get_video_length(cap, method="header"):
    assert method in ["header", "set"]
    if method == "header":
        length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    else:
        cap.set(cv2.CAP_PROP_POS_AVI_RATIO, 1)
        length = int(cap.get(cv2.CAP_PROP_POS_FRAMES))
    return length


def get_info(path):
    try:
        ext = os.path.splitext(path)[1].lower()
        if ext in IMG_EXTENSIONS:
            im = cv2.imread(path)
            if im is None:
                return 0, 0, 0, np.nan, np.nan
            height, width = im.shape[:2]
            num_frames, fps = 1, np.nan
        else:
            cap = cv2.VideoCapture(path)
            num_frames, height, width, fps = (
                get_video_length(cap, method="header"),
                int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)),
                int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
                float(cap.get(cv2.CAP_PROP_FPS)),
            )
        hw = height * width
        aspect_ratio = height / width if width > 0 else np.nan
        return num_frames, height, width, aspect_ratio, fps, hw
    except:
        return 0, 0, 0, np.nan, np.nan, np.nan


def get_video_info(path):
    try:
        vframes, _, _ = torchvision.io.read_video(filename=path, pts_unit="sec", output_format="TCHW")
        num_frames, height, width = vframes.shape[0], vframes.shape[2], vframes.shape[3]
        aspect_ratio = height / width
        fps = np.nan
        resolution = height * width
        return num_frames, height, width, aspect_ratio, fps, resolution
    except:
        return 0, 0, 0, np.nan, np.nan, np.nan


# ======================================================
# --refine-llm-caption
# ======================================================

LLAVA_PREFIX = [
    "The video shows",
    "The video captures",
    "The video features",
    "The video depicts",
    "The video presents",
    "The video features",
    "The video is ",
    "In the video,",
    "The image shows",
    "The image captures",
    "The image features",
    "The image depicts",
    "The image presents",
    "The image features",
    "The image is ",
    "The image portrays",
    "In the image,",
]


def remove_caption_prefix(caption):
    for prefix in LLAVA_PREFIX:
        if caption.startswith(prefix) or caption.startswith(prefix.lower()):
            caption = caption[len(prefix) :].strip()
            if caption[0].islower():
                caption = caption[0].upper() + caption[1:]
            return caption
    return caption


# ======================================================
# --merge-cmotion
# ======================================================

CMOTION_TEXT = {
    "static": "The camera is static.",
    "dynamic": "The camera is moving.",
    "unknown": None,
    "zoom in": "The camera is zooming in.",
    "zoom out": "The camera is zooming out.",
    "pan left": "The camera is panning left.",
    "pan right": "The camera is panning right.",
    "tilt up": "The camera is tilting up.",
    "tilt down": "The camera is tilting down.",
    "pan/tilt": "The camera is panning.",
}
CMOTION_PROBS = {
    # hard-coded probabilities
    "static": 1.0,
    "dynamic": 1.0,
    "unknown": 0.0,
    "zoom in": 1.0,
    "zoom out": 1.0,
    "pan left": 1.0,
    "pan right": 1.0,
    "tilt up": 1.0,
    "tilt down": 1.0,
    "pan/tilt": 1.0,
}


def merge_cmotion(caption, cmotion):
    text = CMOTION_TEXT[cmotion]
    prob = CMOTION_PROBS[cmotion]
    if text is not None and random.random() < prob:
        caption = f"{caption} {text}"
    return caption


# ======================================================
# --lang
# ======================================================


def build_lang_detector(lang_to_detect):
    from lingua import Language, LanguageDetectorBuilder

    lang_dict = dict(en=Language.ENGLISH)
    assert lang_to_detect in lang_dict
    valid_lang = lang_dict[lang_to_detect]
    detector = LanguageDetectorBuilder.from_all_spoken_languages().with_low_accuracy_mode().build()

    def detect_lang(caption):
        confidence_values = detector.compute_language_confidence_values(caption)
        confidence = [x.language for x in confidence_values[:5]]
        if valid_lang not in confidence:
            return False
        return True

    return detect_lang


# ======================================================
# --clean-caption
# ======================================================


def basic_clean(text):
    import ftfy

    text = ftfy.fix_text(text)
    text = html.unescape(html.unescape(text))
    return text.strip()


BAD_PUNCT_REGEX = re.compile(
    r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}"
)  # noqa


def clean_caption(caption):
    import urllib.parse as ul

    from bs4 import BeautifulSoup

    caption = str(caption)
    caption = ul.unquote_plus(caption)
    caption = caption.strip().lower()
    caption = re.sub("<person>", "person", caption)
    # urls:
    caption = re.sub(
        r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))",  # noqa
        "",
        caption,
    )  # regex for urls
    caption = re.sub(
        r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))",  # noqa
        "",
        caption,
    )  # regex for urls
    # html:
    caption = BeautifulSoup(caption, features="html.parser").text

    # @<nickname>
    caption = re.sub(r"@[\w\d]+\b", "", caption)

    # 31C0—31EF CJK Strokes
    # 31F0—31FF Katakana Phonetic Extensions
    # 3200—32FF Enclosed CJK Letters and Months
    # 3300—33FF CJK Compatibility
    # 3400—4DBF CJK Unified Ideographs Extension A
    # 4DC0—4DFF Yijing Hexagram Symbols
    # 4E00—9FFF CJK Unified Ideographs
    caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
    caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
    caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
    caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
    caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
    caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
    caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
    #######################################################

    # все виды тире / all types of dash --> "-"
    caption = re.sub(
        r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+",  # noqa
        "-",
        caption,
    )

    # кавычки к одному стандарту
    caption = re.sub(r"[`´«»“”¨]", '"', caption)
    caption = re.sub(r"[‘’]", "'", caption)

    # &quot;
    caption = re.sub(r"&quot;?", "", caption)
    # &amp
    caption = re.sub(r"&amp", "", caption)

    # ip adresses:
    caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)

    # article ids:
    caption = re.sub(r"\d:\d\d\s+$", "", caption)

    # \n
    caption = re.sub(r"\\n", " ", caption)

    # "#123"
    caption = re.sub(r"#\d{1,3}\b", "", caption)
    # "#12345.."
    caption = re.sub(r"#\d{5,}\b", "", caption)
    # "123456.."
    caption = re.sub(r"\b\d{6,}\b", "", caption)
    # filenames:
    caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)

    #
    caption = re.sub(r"[\"\']{2,}", r'"', caption)  # """AUSVERKAUFT"""
    caption = re.sub(r"[\.]{2,}", r" ", caption)  # """AUSVERKAUFT"""

    caption = re.sub(BAD_PUNCT_REGEX, r" ", caption)  # ***AUSVERKAUFT***, #AUSVERKAUFT
    caption = re.sub(r"\s+\.\s+", r" ", caption)  # " . "

    # this-is-my-cute-cat / this_is_my_cute_cat
    regex2 = re.compile(r"(?:\-|\_)")
    if len(re.findall(regex2, caption)) > 3:
        caption = re.sub(regex2, " ", caption)

    caption = basic_clean(caption)

    caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption)  # jc6640
    caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption)  # jc6640vc
    caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption)  # 6640vc231

    caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
    caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
    caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
    caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
    caption = re.sub(r"\bpage\s+\d+\b", "", caption)

    caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption)  # j2d1a2a...

    caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)

    caption = re.sub(r"\b\s+\:\s+", r": ", caption)
    caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
    caption = re.sub(r"\s+", " ", caption)

    caption.strip()

    caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
    caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
    caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
    caption = re.sub(r"^\.\S+$", "", caption)

    return caption.strip()


def text_preprocessing(text, use_text_preprocessing: bool = True):
    if use_text_preprocessing:
        # The exact text cleaning as was in the training stage:
        text = clean_caption(text)
        text = clean_caption(text)
        return text
    else:
        return text.lower().strip()


# ======================================================
# load caption
# ======================================================


def load_caption(path, ext):
    try:
        assert ext in ["json"]
        json_path = path.split(".")[0] + ".json"
        with open(json_path, "r") as f:
            data = json.load(f)
        caption = data["caption"]
        return caption
    except:
        return ""


# ======================================================
# read & write
# ======================================================


def read_file(input_path):
    if input_path.endswith(".csv"):
        return pd.read_csv(input_path)
    elif input_path.endswith(".parquet"):
        return pd.read_parquet(input_path)
    else:
        raise NotImplementedError(f"Unsupported file format: {input_path}")


def save_file(data, output_path):
    output_dir = os.path.dirname(output_path)
    if not os.path.exists(output_dir) and output_dir != "":
        os.makedirs(output_dir)
    if output_path.endswith(".csv"):
        return data.to_csv(output_path, index=False)
    elif output_path.endswith(".parquet"):
        return data.to_parquet(output_path, index=False)
    else:
        raise NotImplementedError(f"Unsupported file format: {output_path}")


def read_data(input_paths):
    data = []
    input_name = ""
    input_list = []
    for input_path in input_paths:
        input_list.extend(glob(input_path))
    print("Input files:", input_list)
    for i, input_path in enumerate(input_list):
        assert os.path.exists(input_path)
        data.append(read_file(input_path))
        input_name += os.path.basename(input_path).split(".")[0]
        if i != len(input_list) - 1:
            input_name += "+"
        print(f"Loaded {len(data[-1])} samples from {input_path}.")
    data = pd.concat(data, ignore_index=True, sort=False)
    print(f"Total number of samples: {len(data)}.")
    return data, input_name


# ======================================================
# main
# ======================================================
# To add a new method, register it in the main, parse_args, and get_output_path functions, and update the doc at /tools/datasets/README.md#documentation


def main(args):
    # reading data
    data, input_name = read_data(args.input)

    # make difference
    if args.difference is not None:
        data_diff = pd.read_csv(args.difference)
        print(f"Difference csv contains {len(data_diff)} samples.")
        data = data[~data["path"].isin(data_diff["path"])]
        input_name += f"-{os.path.basename(args.difference).split('.')[0]}"
        print(f"Filtered number of samples: {len(data)}.")

    # make intersection
    if args.intersection is not None:
        data_new = pd.read_csv(args.intersection)
        print(f"Intersection csv contains {len(data_new)} samples.")
        cols_to_use = data_new.columns.difference(data.columns)
        cols_to_use = cols_to_use.insert(0, "path")
        data = pd.merge(data, data_new[cols_to_use], on="path", how="inner")
        print(f"Intersection number of samples: {len(data)}.")

    # train columns
    if args.train_column:
        all_columns = data.columns
        columns_to_drop = all_columns.difference(TRAIN_COLUMNS)
        data = data.drop(columns=columns_to_drop)

    # get output path
    output_path = get_output_path(args, input_name)

    # preparation
    if args.lang is not None:
        detect_lang = build_lang_detector(args.lang)
    if args.count_num_token == "t5":
        from transformers import AutoTokenizer

        tokenizer = AutoTokenizer.from_pretrained("DeepFloyd/t5-v1_1-xxl")

    # IO-related
    if args.load_caption is not None:
        assert "path" in data.columns
        data["text"] = apply(data["path"], load_caption, ext=args.load_caption)
    if args.info:
        info = apply(data["path"], get_info)
        (
            data["num_frames"],
            data["height"],
            data["width"],
            data["aspect_ratio"],
            data["fps"],
            data["resolution"],
        ) = zip(*info)
    if args.video_info:
        info = apply(data["path"], get_video_info)
        (
            data["num_frames"],
            data["height"],
            data["width"],
            data["aspect_ratio"],
            data["fps"],
            data["resolution"],
        ) = zip(*info)
    if args.ext:
        assert "path" in data.columns
        data = data[apply(data["path"], os.path.exists)]

    # filtering
    if args.remove_url:
        assert "text" in data.columns
        data = data[~data["text"].str.contains(r"(?P<url>https?://[^\s]+)", regex=True)]
    if args.lang is not None:
        assert "text" in data.columns
        data = data[data["text"].progress_apply(detect_lang)]  # cannot parallelize
    if args.remove_empty_caption:
        assert "text" in data.columns
        data = data[data["text"].str.len() > 0]
        data = data[~data["text"].isna()]
    if args.remove_path_duplication:
        assert "path" in data.columns
        data = data.drop_duplicates(subset=["path"])

    # processing
    if args.relpath is not None:
        data["path"] = apply(data["path"], lambda x: os.path.relpath(x, args.relpath))
    if args.abspath is not None:
        data["path"] = apply(data["path"], lambda x: os.path.join(args.abspath, x))
    if args.merge_cmotion:
        data["text"] = apply(data, lambda x: merge_cmotion(x["text"], x["cmotion"]), axis=1)
    if args.refine_llm_caption:
        assert "text" in data.columns
        data["text"] = apply(data["text"], remove_caption_prefix)
    if args.clean_caption:
        assert "text" in data.columns
        data["text"] = apply(
            data["text"],
            partial(text_preprocessing, use_text_preprocessing=True),
        )

    if args.count_num_token is not None:
        assert "text" in data.columns
        data["text_len"] = apply(data["text"], lambda x: len(tokenizer(x)["input_ids"]))

    # sort
    if args.sort is not None:
        data = data.sort_values(by=args.sort, ascending=False)
    if args.sort_ascending is not None:
        data = data.sort_values(by=args.sort_ascending, ascending=True)

    # filtering
    if args.remove_empty_caption:
        assert "text" in data.columns
        data = data[data["text"].str.len() > 0]
        data = data[~data["text"].isna()]
    if args.fmin is not None:
        assert "num_frames" in data.columns
        data = data[data["num_frames"] >= args.fmin]
    if args.fmax is not None:
        assert "num_frames" in data.columns
        data = data[data["num_frames"] <= args.fmax]
    if args.hwmax is not None:
        if "resolution" not in data.columns:
            height = data["height"]
            width = data["width"]
            data["resolution"] = height * width
        data = data[data["resolution"] <= args.hwmax]
    if args.aesmin is not None:
        assert "aes" in data.columns
        data = data[data["aes"] >= args.aesmin]
    if args.matchmin is not None:
        assert "match" in data.columns
        data = data[data["match"] >= args.matchmin]
    if args.flowmin is not None:
        assert "flow" in data.columns
        data = data[data["flow"] >= args.flowmin]
    if args.remove_text_duplication:
        data = data.drop_duplicates(subset=["text"], keep="first")
    print(f"Filtered number of samples: {len(data)}.")

    # shard data
    if args.shard is not None:
        sharded_data = np.array_split(data, args.shard)
        for i in range(args.shard):
            output_path_part = output_path.split(".")
            output_path_s = ".".join(output_path_part[:-1]) + f"_{i}." + output_path_part[-1]
            save_file(sharded_data[i], output_path_s)
            print(f"Saved {len(sharded_data[i])} samples to {output_path_s}.")
    else:
        save_file(data, output_path)
        print(f"Saved {len(data)} samples to {output_path}.")


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("input", type=str, nargs="+", help="path to the input dataset")
    parser.add_argument("--output", type=str, default=None, help="output path")
    parser.add_argument("--format", type=str, default="csv", help="output format", choices=["csv", "parquet"])
    parser.add_argument("--disable-parallel", action="store_true", help="disable parallel processing")
    parser.add_argument("--num-workers", type=int, default=None, help="number of workers")
    parser.add_argument("--seed", type=int, default=None, help="random seed")

    # special case
    parser.add_argument("--shard", type=int, default=None, help="shard the dataset")
    parser.add_argument("--sort", type=str, default=None, help="sort by column")
    parser.add_argument("--sort-ascending", type=str, default=None, help="sort by column (ascending order)")
    parser.add_argument("--difference", type=str, default=None, help="get difference from the dataset")
    parser.add_argument(
        "--intersection", type=str, default=None, help="keep the paths in csv from the dataset and merge columns"
    )
    parser.add_argument("--train-column", action="store_true", help="only keep the train column")

    # IO-related
    parser.add_argument("--info", action="store_true", help="get the basic information of each video and image")
    parser.add_argument("--video-info", action="store_true", help="get the basic information of each video")
    parser.add_argument("--ext", action="store_true", help="check if the file exists")
    parser.add_argument(
        "--load-caption", type=str, default=None, choices=["json", "txt"], help="load the caption from json or txt"
    )

    # path processing
    parser.add_argument("--relpath", type=str, default=None, help="modify the path to relative path by root given")
    parser.add_argument("--abspath", type=str, default=None, help="modify the path to absolute path by root given")

    # caption filtering
    parser.add_argument(
        "--remove-empty-caption",
        action="store_true",
        help="remove rows with empty caption",
    )
    parser.add_argument("--remove-url", action="store_true", help="remove rows with url in caption")
    parser.add_argument("--lang", type=str, default=None, help="remove rows with other language")
    parser.add_argument("--remove-path-duplication", action="store_true", help="remove rows with duplicated path")
    parser.add_argument("--remove-text-duplication", action="store_true", help="remove rows with duplicated caption")

    # caption processing
    parser.add_argument("--refine-llm-caption", action="store_true", help="modify the caption generated by LLM")
    parser.add_argument(
        "--clean-caption", action="store_true", help="modify the caption according to T5 pipeline to suit training"
    )
    parser.add_argument("--merge-cmotion", action="store_true", help="merge the camera motion to the caption")
    parser.add_argument(
        "--count-num-token", type=str, choices=["t5"], default=None, help="Count the number of tokens in the caption"
    )

    # score filtering
    parser.add_argument("--fmin", type=int, default=None, help="filter the dataset by minimum number of frames")
    parser.add_argument("--fmax", type=int, default=None, help="filter the dataset by maximum number of frames")
    parser.add_argument("--hwmax", type=int, default=None, help="filter the dataset by maximum resolution")
    parser.add_argument("--aesmin", type=float, default=None, help="filter the dataset by minimum aes score")
    parser.add_argument("--matchmin", type=float, default=None, help="filter the dataset by minimum match score")
    parser.add_argument("--flowmin", type=float, default=None, help="filter the dataset by minimum flow score")

    return parser.parse_args()


def get_output_path(args, input_name):
    if args.output is not None:
        return args.output
    name = input_name
    dir_path = os.path.dirname(args.input[0])

    # sort
    if args.sort is not None:
        assert args.sort_ascending is None
        name += "_sort"
    if args.sort_ascending is not None:
        assert args.sort is None
        name += "_sort"

    # IO-related
    # for IO-related, the function must be wrapped in try-except
    if args.info:
        name += "_info"
    if args.video_info:
        name += "_vinfo"
    if args.ext:
        name += "_ext"
    if args.load_caption:
        name += f"_load{args.load_caption}"

    # path processing
    if args.relpath is not None:
        name += "_relpath"
    if args.abspath is not None:
        name += "_abspath"

    # caption filtering
    if args.remove_empty_caption:
        name += "_noempty"
    if args.remove_url:
        name += "_nourl"
    if args.lang is not None:
        name += f"_{args.lang}"
    if args.remove_path_duplication:
        name += "_noduppath"
    if args.remove_text_duplication:
        name += "_noduptext"

    # caption processing
    if args.refine_llm_caption:
        name += "_llm"
    if args.clean_caption:
        name += "_clean"
    if args.merge_cmotion:
        name += "_cmcaption"
    if args.count_num_token:
        name += "_ntoken"

    # score filtering
    if args.fmin is not None:
        name += f"_fmin{args.fmin}"
    if args.fmax is not None:
        name += f"_fmax{args.fmax}"
    if args.hwmax is not None:
        name += f"_hwmax{args.hwmax}"
    if args.aesmin is not None:
        name += f"_aesmin{args.aesmin}"
    if args.matchmin is not None:
        name += f"_matchmin{args.matchmin}"
    if args.flowmin is not None:
        name += f"_flowmin{args.flowmin}"

    output_path = os.path.join(dir_path, f"{name}.{args.format}")
    return output_path


if __name__ == "__main__":
    args = parse_args()
    if args.disable_parallel:
        PANDA_USE_PARALLEL = False
    if PANDA_USE_PARALLEL:
        if args.num_workers is not None:
            pandarallel.initialize(nb_workers=args.num_workers, progress_bar=True)
        else:
            pandarallel.initialize(progress_bar=True)
    if args.seed is not None:
        random.seed(args.seed)
        np.random.seed(args.seed)
    main(args)