Spaces:
Runtime error
Runtime error
from videogen_hub.pipelines.cogvideo.cogvideo_src.cogvideo_pipeline import ( | |
InferenceModel_Interpolate, | |
InferenceModel_Sequential, | |
my_filling_sequence, | |
get_masks_and_position_ids_stage1, | |
get_masks_and_position_ids_stage2, | |
my_save_multiple_images, | |
) | |
from videogen_hub.depend.icetk import icetk as tokenizer | |
from videogen_hub.pipelines.cogvideo.cogvideo_src.coglm_strategy import ( | |
CoglmStrategy, | |
) | |
from videogen_hub.pipelines.cogvideo.cogvideo_src.sr_pipeline import ( | |
DirectSuperResolution, | |
) | |
from SwissArmyTransformer.resources import auto_create | |
import time, logging, sys, os, torch | |
import torch.distributed as dist | |
# path = os.path.join(args.output_path, f"{now_qi}_{raw_text}") | |
def pipeline(args, raw_text, height, width, duration): | |
# model_stage1, args = InferenceModel_Sequential.from_pretrained(args, 'cogvideo-stage1') | |
# model_stage1.eval() | |
# parent_givan_tokens = process_stage1(model_stage1, raw_text, duration=4.0, video_raw_text=raw_text, video_guidance_text="视频", | |
# image_text_suffix=" 高清摄影", | |
# outputdir=None, batch_size=args.batch_size) | |
# process_stage2(model_stage2, raw_text, duration=2.0, video_raw_text=raw_text+" 视频", | |
# video_guidance_text="视频", parent_given_tokens=parent_given_tokens, | |
# outputdir=path, | |
# gpu_rank=0, gpu_parallel_size=1) # TODO: 修改 | |
assert int(args.stage_1) + int(args.stage_2) + int(args.both_stages) == 1 | |
rank_id = args.device % args.parallel_size | |
generate_frame_num = args.generate_frame_num | |
if args.stage_1 or args.both_stages: | |
model_stage1, args = InferenceModel_Sequential.from_pretrained( | |
args, "cogvideo-stage1" | |
) | |
model_stage1.eval() | |
if args.both_stages: | |
model_stage1 = model_stage1.cpu() | |
if args.stage_2 or args.both_stages: | |
model_stage2, args = InferenceModel_Interpolate.from_pretrained( | |
args, "cogvideo-stage2" | |
) | |
model_stage2.eval() | |
if args.both_stages: | |
model_stage2 = model_stage2.cpu() | |
invalid_slices = [slice(tokenizer.num_image_tokens, None)] | |
strategy_cogview2 = CoglmStrategy(invalid_slices, temperature=1.0, top_k=16) | |
strategy_cogvideo = CoglmStrategy( | |
invalid_slices, | |
temperature=args.temperature, | |
top_k=args.top_k, | |
temperature2=args.coglm_temperature2, | |
) | |
if not args.stage_1: | |
# from sr_pipeline import DirectSuperResolution | |
dsr_path = auto_create( | |
"cogview2-dsr", path=None | |
) # path=os.getenv('SAT_HOME', '~/.sat_models') | |
dsr = DirectSuperResolution(args, dsr_path, max_bz=12, onCUDA=False) | |
def process_stage2( | |
model, | |
seq_text, | |
duration, | |
video_raw_text=None, | |
video_guidance_text="视频", | |
parent_given_tokens=None, | |
conddir=None, | |
outputdir=None, | |
gpu_rank=0, | |
gpu_parallel_size=1, | |
): | |
stage2_starttime = time.time() | |
use_guidance = args.use_guidance_stage2 | |
if args.both_stages: | |
move_start_time = time.time() | |
logging.debug("moving stage-2 model to cuda") | |
model = model.cuda() | |
logging.debug( | |
"moving in stage-2 model takes time: {:.2f}".format( | |
time.time() - move_start_time | |
) | |
) | |
try: | |
if parent_given_tokens is None: | |
assert conddir is not None | |
parent_given_tokens = torch.load( | |
os.path.join(conddir, "frame_tokens.pt"), map_location="cpu" | |
) | |
sample_num_allgpu = parent_given_tokens.shape[0] | |
sample_num = sample_num_allgpu // gpu_parallel_size | |
assert sample_num * gpu_parallel_size == sample_num_allgpu | |
parent_given_tokens = parent_given_tokens[ | |
gpu_rank * sample_num : (gpu_rank + 1) * sample_num | |
] | |
except: | |
logging.critical("No frame_tokens found in interpolation, skip") | |
return False | |
# CogVideo Stage2 Generation | |
while ( | |
duration >= 0.5 | |
): # TODO: You can change the boundary to change the frame rate | |
parent_given_tokens_num = parent_given_tokens.shape[1] | |
generate_batchsize_persample = (parent_given_tokens_num - 1) // 2 | |
generate_batchsize_total = generate_batchsize_persample * sample_num | |
total_frames = generate_frame_num | |
frame_len = 400 | |
enc_text = tokenizer.encode(seq_text) | |
enc_duration = tokenizer.encode(str(float(duration)) + "秒") | |
seq = ( | |
enc_duration | |
+ [tokenizer["<n>"]] | |
+ enc_text | |
+ [tokenizer["<start_of_image>"]] | |
+ [-1] * 400 * generate_frame_num | |
) | |
text_len = len(seq) - frame_len * generate_frame_num - 1 | |
logging.info( | |
"[Stage2: Generating Frames, Frame Rate {:d}]\nraw text: {:s}".format( | |
int(4 / duration), tokenizer.decode(enc_text) | |
) | |
) | |
# generation | |
seq = ( | |
torch.cuda.LongTensor(seq, device=args.device) | |
.unsqueeze(0) | |
.repeat(generate_batchsize_total, 1) | |
) | |
for sample_i in range(sample_num): | |
for i in range(generate_batchsize_persample): | |
seq[sample_i * generate_batchsize_persample + i][ | |
text_len + 1 : text_len + 1 + 400 | |
] = parent_given_tokens[sample_i][2 * i] | |
seq[sample_i * generate_batchsize_persample + i][ | |
text_len + 1 + 400 : text_len + 1 + 800 | |
] = parent_given_tokens[sample_i][2 * i + 1] | |
seq[sample_i * generate_batchsize_persample + i][ | |
text_len + 1 + 800 : text_len + 1 + 1200 | |
] = parent_given_tokens[sample_i][2 * i + 2] | |
if use_guidance: | |
guider_seq = ( | |
enc_duration | |
+ [tokenizer["<n>"]] | |
+ tokenizer.encode(video_guidance_text) | |
+ [tokenizer["<start_of_image>"]] | |
+ [-1] * 400 * generate_frame_num | |
) | |
guider_text_len = len(guider_seq) - frame_len * generate_frame_num - 1 | |
guider_seq = ( | |
torch.cuda.LongTensor(guider_seq, device=args.device) | |
.unsqueeze(0) | |
.repeat(generate_batchsize_total, 1) | |
) | |
for sample_i in range(sample_num): | |
for i in range(generate_batchsize_persample): | |
guider_seq[sample_i * generate_batchsize_persample + i][ | |
text_len + 1 : text_len + 1 + 400 | |
] = parent_given_tokens[sample_i][2 * i] | |
guider_seq[sample_i * generate_batchsize_persample + i][ | |
text_len + 1 + 400 : text_len + 1 + 800 | |
] = parent_given_tokens[sample_i][2 * i + 1] | |
guider_seq[sample_i * generate_batchsize_persample + i][ | |
text_len + 1 + 800 : text_len + 1 + 1200 | |
] = parent_given_tokens[sample_i][2 * i + 2] | |
video_log_text_attention_weights = 0 | |
else: | |
guider_seq = None | |
guider_text_len = 0 | |
video_log_text_attention_weights = 1.4 | |
mbz = args.max_inference_batch_size | |
assert generate_batchsize_total < mbz or generate_batchsize_total % mbz == 0 | |
output_list = [] | |
start_time = time.time() | |
for tim in range(max(generate_batchsize_total // mbz, 1)): | |
input_seq = ( | |
seq[: min(generate_batchsize_total, mbz)].clone() | |
if tim == 0 | |
else seq[mbz * tim : mbz * (tim + 1)].clone() | |
) | |
guider_seq2 = ( | |
( | |
guider_seq[: min(generate_batchsize_total, mbz)].clone() | |
if tim == 0 | |
else guider_seq[mbz * tim : mbz * (tim + 1)].clone() | |
) | |
if guider_seq is not None | |
else None | |
) | |
output_list.append( | |
my_filling_sequence( | |
model, | |
args, | |
input_seq, | |
batch_size=min(generate_batchsize_total, mbz), | |
get_masks_and_position_ids=get_masks_and_position_ids_stage2, | |
text_len=text_len, | |
frame_len=frame_len, | |
strategy=strategy_cogview2, | |
strategy2=strategy_cogvideo, | |
log_text_attention_weights=video_log_text_attention_weights, | |
mode_stage1=False, | |
guider_seq=guider_seq2, | |
guider_text_len=guider_text_len, | |
guidance_alpha=args.guidance_alpha, | |
limited_spatial_channel_mem=True, | |
)[0] | |
) | |
logging.info( | |
"Duration {:.2f}, Taken time {:.2f}\n".format( | |
duration, time.time() - start_time | |
) | |
) | |
output_tokens = torch.cat(output_list, dim=0) | |
output_tokens = output_tokens[ | |
:, text_len + 1 : text_len + 1 + (total_frames) * 400 | |
].reshape(sample_num, -1, 400 * total_frames) | |
output_tokens_merge = torch.cat( | |
( | |
output_tokens[:, :, : 1 * 400], | |
output_tokens[:, :, 400 * 3 : 4 * 400], | |
output_tokens[:, :, 400 * 1 : 2 * 400], | |
output_tokens[:, :, 400 * 4 : (total_frames) * 400], | |
), | |
dim=2, | |
).reshape(sample_num, -1, 400) | |
output_tokens_merge = torch.cat( | |
(output_tokens_merge, output_tokens[:, -1:, 400 * 2 : 3 * 400]), dim=1 | |
) | |
duration /= 2 | |
parent_given_tokens = output_tokens_merge | |
if args.both_stages: | |
move_start_time = time.time() | |
logging.debug("moving stage 2 model to cpu") | |
model = model.cpu() | |
torch.cuda.empty_cache() | |
logging.debug( | |
"moving out model2 takes time: {:.2f}".format( | |
time.time() - move_start_time | |
) | |
) | |
logging.info( | |
"CogVideo Stage2 completed. Taken time {:.2f}\n".format( | |
time.time() - stage2_starttime | |
) | |
) | |
# decoding | |
# imgs = [torch.nn.functional.interpolate(tokenizer.decode(image_ids=seq.tolist()), size=(480, 480)) for seq in output_tokens_merge] | |
# os.makedirs(output_dir_full_path, exist_ok=True) | |
# my_save_multiple_images(imgs, output_dir_full_path,subdir="frames", debug=False) | |
# torch.save(output_tokens_merge.cpu(), os.path.join(output_dir_full_path, 'frame_token.pt')) | |
# os.system(f"gifmaker -i '{output_dir_full_path}'/frames/0*.jpg -o '{output_dir_full_path}/{str(float(duration))}_concat.gif' -d 0.2") | |
# direct super-resolution by CogView2 | |
logging.info("[Direct super-resolution]") | |
dsr_starttime = time.time() | |
enc_text = tokenizer.encode(seq_text) | |
frame_num_per_sample = parent_given_tokens.shape[1] | |
parent_given_tokens_2d = parent_given_tokens.reshape(-1, 400) | |
text_seq = ( | |
torch.cuda.LongTensor(enc_text, device=args.device) | |
.unsqueeze(0) | |
.repeat(parent_given_tokens_2d.shape[0], 1) | |
) | |
sred_tokens = dsr(text_seq, parent_given_tokens_2d) | |
decoded_sr_videos = [] | |
for sample_i in range(sample_num): | |
decoded_sr_imgs = [] | |
for frame_i in range(frame_num_per_sample): | |
decoded_sr_img = tokenizer.decode( | |
image_ids=sred_tokens[frame_i + sample_i * frame_num_per_sample][ | |
-3600: | |
] | |
) | |
decoded_sr_imgs.append( | |
torch.nn.functional.interpolate( | |
decoded_sr_img, size=(height, width) | |
) | |
) | |
decoded_sr_videos.append(decoded_sr_imgs) | |
return decoded_sr_videos | |
# for sample_i in range(sample_num): | |
# my_save_multiple_images(decoded_sr_videos[sample_i], outputdir,subdir=f"frames/{sample_i+sample_num*gpu_rank}", debug=False) | |
# os.system(f"gifmaker -i '{outputdir}'/frames/'{sample_i+sample_num*gpu_rank}'/0*.jpg -o '{outputdir}/{sample_i+sample_num*gpu_rank}.gif' -d 0.125") | |
# logging.info("Direct super-resolution completed. Taken time {:.2f}\n".format(time.time() - dsr_starttime)) | |
# return True | |
def process_stage1( | |
model, | |
seq_text, | |
duration, | |
video_raw_text=None, | |
video_guidance_text="视频", | |
image_text_suffix="", | |
outputdir=None, | |
batch_size=1, | |
): | |
process_start_time = time.time() | |
use_guide = args.use_guidance_stage1 | |
if args.both_stages: | |
move_start_time = time.time() | |
logging.debug("moving stage 1 model to cuda") | |
model = model.cuda() | |
logging.debug( | |
"moving in model1 takes time: {:.2f}".format( | |
time.time() - move_start_time | |
) | |
) | |
if video_raw_text is None: | |
video_raw_text = seq_text | |
mbz = ( | |
args.stage1_max_inference_batch_size | |
if args.stage1_max_inference_batch_size > 0 | |
else args.max_inference_batch_size | |
) | |
assert batch_size < mbz or batch_size % mbz == 0 | |
frame_len = 400 | |
# generate the first frame: | |
enc_text = tokenizer.encode(seq_text + image_text_suffix) | |
seq_1st = ( | |
enc_text + [tokenizer["<start_of_image>"]] + [-1] * 400 | |
) # IV!! # test local!!! # test randboi!!! | |
logging.info( | |
"[Generating First Frame with CogView2]Raw text: {:s}".format( | |
tokenizer.decode(enc_text) | |
) | |
) | |
text_len_1st = len(seq_1st) - frame_len * 1 - 1 | |
seq_1st = torch.cuda.LongTensor(seq_1st, device=args.device).unsqueeze(0) | |
output_list_1st = [] | |
for tim in range(max(batch_size // mbz, 1)): | |
start_time = time.time() | |
output_list_1st.append( | |
my_filling_sequence( | |
model, | |
args, | |
seq_1st.clone(), | |
batch_size=min(batch_size, mbz), | |
get_masks_and_position_ids=get_masks_and_position_ids_stage1, | |
text_len=text_len_1st, | |
frame_len=frame_len, | |
strategy=strategy_cogview2, | |
strategy2=strategy_cogvideo, | |
log_text_attention_weights=1.4, | |
enforce_no_swin=True, | |
mode_stage1=True, | |
)[0] | |
) | |
logging.info( | |
"[First Frame]Taken time {:.2f}\n".format(time.time() - start_time) | |
) | |
output_tokens_1st = torch.cat(output_list_1st, dim=0) | |
given_tokens = output_tokens_1st[ | |
:, text_len_1st + 1 : text_len_1st + 401 | |
].unsqueeze( | |
1 | |
) # given_tokens.shape: [bs, frame_num, 400] | |
# generate subsequent frames: | |
total_frames = generate_frame_num | |
enc_duration = tokenizer.encode(str(float(duration)) + "秒") | |
if use_guide: | |
video_raw_text = video_raw_text + " 视频" | |
enc_text_video = tokenizer.encode(video_raw_text) | |
seq = ( | |
enc_duration | |
+ [tokenizer["<n>"]] | |
+ enc_text_video | |
+ [tokenizer["<start_of_image>"]] | |
+ [-1] * 400 * generate_frame_num | |
) | |
guider_seq = ( | |
enc_duration | |
+ [tokenizer["<n>"]] | |
+ tokenizer.encode(video_guidance_text) | |
+ [tokenizer["<start_of_image>"]] | |
+ [-1] * 400 * generate_frame_num | |
) | |
logging.info( | |
"[Stage1: Generating Subsequent Frames, Frame Rate {:.1f}]\nraw text: {:s}".format( | |
4 / duration, tokenizer.decode(enc_text_video) | |
) | |
) | |
text_len = len(seq) - frame_len * generate_frame_num - 1 | |
guider_text_len = len(guider_seq) - frame_len * generate_frame_num - 1 | |
seq = ( | |
torch.cuda.LongTensor(seq, device=args.device) | |
.unsqueeze(0) | |
.repeat(batch_size, 1) | |
) | |
guider_seq = ( | |
torch.cuda.LongTensor(guider_seq, device=args.device) | |
.unsqueeze(0) | |
.repeat(batch_size, 1) | |
) | |
for given_frame_id in range(given_tokens.shape[1]): | |
seq[ | |
:, | |
text_len | |
+ 1 | |
+ given_frame_id * 400 : text_len | |
+ 1 | |
+ (given_frame_id + 1) * 400, | |
] = given_tokens[:, given_frame_id] | |
guider_seq[ | |
:, | |
guider_text_len | |
+ 1 | |
+ given_frame_id * 400 : guider_text_len | |
+ 1 | |
+ (given_frame_id + 1) * 400, | |
] = given_tokens[:, given_frame_id] | |
output_list = [] | |
if use_guide: | |
video_log_text_attention_weights = 0 | |
else: | |
guider_seq = None | |
video_log_text_attention_weights = 1.4 | |
for tim in range(max(batch_size // mbz, 1)): | |
start_time = time.time() | |
input_seq = ( | |
seq[: min(batch_size, mbz)].clone() | |
if tim == 0 | |
else seq[mbz * tim : mbz * (tim + 1)].clone() | |
) | |
guider_seq2 = ( | |
( | |
guider_seq[: min(batch_size, mbz)].clone() | |
if tim == 0 | |
else guider_seq[mbz * tim : mbz * (tim + 1)].clone() | |
) | |
if guider_seq is not None | |
else None | |
) | |
output_list.append( | |
my_filling_sequence( | |
model, | |
args, | |
input_seq, | |
batch_size=min(batch_size, mbz), | |
get_masks_and_position_ids=get_masks_and_position_ids_stage1, | |
text_len=text_len, | |
frame_len=frame_len, | |
strategy=strategy_cogview2, | |
strategy2=strategy_cogvideo, | |
log_text_attention_weights=video_log_text_attention_weights, | |
guider_seq=guider_seq2, | |
guider_text_len=guider_text_len, | |
guidance_alpha=args.guidance_alpha, | |
limited_spatial_channel_mem=True, | |
mode_stage1=True, | |
)[0] | |
) | |
output_tokens = torch.cat(output_list, dim=0)[:, 1 + text_len :] | |
if args.both_stages: | |
move_start_time = time.time() | |
logging.debug("moving stage 1 model to cpu") | |
model = model.cpu() | |
torch.cuda.empty_cache() | |
logging.debug( | |
"moving in model1 takes time: {:.2f}".format( | |
time.time() - move_start_time | |
) | |
) | |
# decoding | |
imgs, sred_imgs, txts = [], [], [] | |
for seq in output_tokens: | |
decoded_imgs = [ | |
torch.nn.functional.interpolate( | |
tokenizer.decode(image_ids=seq.tolist()[i * 400 : (i + 1) * 400]), | |
size=(height, width), | |
) | |
for i in range(total_frames) | |
] | |
imgs.append(decoded_imgs) # only the last image (target) | |
assert len(imgs) == batch_size | |
return imgs | |
# save_tokens = output_tokens[:, :+total_frames*400].reshape(-1, total_frames, 400).cpu() | |
# if outputdir is not None: | |
# for clip_i in range(len(imgs)): | |
# # os.makedirs(output_dir_full_paths[clip_i], exist_ok=True) | |
# my_save_multiple_images(imgs[clip_i], outputdir, subdir=f"frames/{clip_i}", debug=False) | |
# os.system(f"gifmaker -i '{outputdir}'/frames/'{clip_i}'/0*.jpg -o '{outputdir}/{clip_i}.gif' -d 0.25") | |
# torch.save(save_tokens, os.path.join(outputdir, 'frame_tokens.pt')) | |
# logging.info("CogVideo Stage1 completed. Taken time {:.2f}\n".format(time.time() - process_start_time)) | |
# return save_tokens | |
# ====================================================================================================== | |
if args.stage_1 or args.both_stages: | |
if args.input_source != "interactive": | |
with open(args.input_source, "r") as fin: | |
promptlist = fin.readlines() | |
promptlist = [p.strip() for p in promptlist] | |
else: | |
promptlist = None | |
now_qi = -1 | |
while True: | |
now_qi += 1 | |
if promptlist is not None: # with input-source | |
if args.multi_gpu: | |
if now_qi % dist.get_world_size() != dist.get_rank(): | |
continue | |
rk = dist.get_rank() | |
else: | |
rk = 0 | |
raw_text = promptlist[now_qi] | |
raw_text = raw_text.strip() | |
print(f"Working on Line No. {now_qi} on {rk}... [{raw_text}]") | |
else: # interactive | |
raw_text = input("\nPlease Input Query (stop to exit) >>> ") | |
raw_text = raw_text.strip() | |
if not raw_text: | |
print("Query should not be empty!") | |
continue | |
if raw_text == "stop": | |
return | |
try: | |
path = os.path.join(args.output_path, f"{now_qi}_{raw_text}") | |
parent_given_tokens, imgs = process_stage1( | |
model_stage1, | |
raw_text, | |
duration=4.0, | |
video_raw_text=raw_text, | |
video_guidance_text="视频", | |
image_text_suffix=" 高清摄影", | |
outputdir=path if args.stage_1 else None, | |
batch_size=args.batch_size, | |
) | |
if args.stage_1 and not args.both_stages: | |
print("only stage 1") | |
return imgs | |
if args.both_stages: | |
videos = process_stage2( | |
model_stage2, | |
raw_text, | |
duration=duration, | |
video_raw_text=raw_text + " 视频", | |
video_guidance_text="视频", | |
parent_given_tokens=parent_given_tokens, | |
outputdir=path, | |
gpu_rank=0, | |
gpu_parallel_size=1, | |
) # TODO: 修改 | |
return videos | |
except (ValueError, FileNotFoundError) as e: | |
print(e) | |
continue | |
elif args.stage_2: | |
sample_dirs = os.listdir(args.output_path) | |
for sample in sample_dirs: | |
raw_text = sample.split("_")[-1] | |
path = os.path.join(args.output_path, sample, "Interp") | |
parent_given_tokens = torch.load( | |
os.path.join(args.output_path, sample, "frame_tokens.pt") | |
) | |
process_stage2( | |
raw_text, | |
duration=2.0, | |
video_raw_text=raw_text + " 视频", | |
video_guidance_text="视频", | |
parent_given_tokens=parent_given_tokens, | |
outputdir=path, | |
gpu_rank=0, | |
gpu_parallel_size=1, | |
) # TODO: 修改 | |
else: | |
assert False | |