import argparse import html import json import os import random import re from functools import partial from glob import glob import cv2 import numpy as np import pandas as pd import torchvision from tqdm import tqdm from .utils import IMG_EXTENSIONS tqdm.pandas() try: from pandarallel import pandarallel PANDA_USE_PARALLEL = True except ImportError: PANDA_USE_PARALLEL = False def apply(df, func, **kwargs): if PANDA_USE_PARALLEL: return df.parallel_apply(func, **kwargs) return df.progress_apply(func, **kwargs) TRAIN_COLUMNS = ["path", "text", "num_frames", "fps", "height", "width", "aspect_ratio", "resolution", "text_len"] # ====================================================== # --info # ====================================================== def get_video_length(cap, method="header"): assert method in ["header", "set"] if method == "header": length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) else: cap.set(cv2.CAP_PROP_POS_AVI_RATIO, 1) length = int(cap.get(cv2.CAP_PROP_POS_FRAMES)) return length def get_info(path): try: ext = os.path.splitext(path)[1].lower() if ext in IMG_EXTENSIONS: im = cv2.imread(path) if im is None: return 0, 0, 0, np.nan, np.nan height, width = im.shape[:2] num_frames, fps = 1, np.nan else: cap = cv2.VideoCapture(path) num_frames, height, width, fps = ( get_video_length(cap, method="header"), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)), int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), float(cap.get(cv2.CAP_PROP_FPS)), ) hw = height * width aspect_ratio = height / width if width > 0 else np.nan return num_frames, height, width, aspect_ratio, fps, hw except: return 0, 0, 0, np.nan, np.nan, np.nan def get_video_info(path): try: vframes, _, _ = torchvision.io.read_video(filename=path, pts_unit="sec", output_format="TCHW") num_frames, height, width = vframes.shape[0], vframes.shape[2], vframes.shape[3] aspect_ratio = height / width fps = np.nan resolution = height * width return num_frames, height, width, aspect_ratio, fps, resolution except: return 0, 0, 0, np.nan, np.nan, np.nan # ====================================================== # --refine-llm-caption # ====================================================== LLAVA_PREFIX = [ "The video shows", "The video captures", "The video features", "The video depicts", "The video presents", "The video features", "The video is ", "In the video,", "The image shows", "The image captures", "The image features", "The image depicts", "The image presents", "The image features", "The image is ", "The image portrays", "In the image,", ] def remove_caption_prefix(caption): for prefix in LLAVA_PREFIX: if caption.startswith(prefix) or caption.startswith(prefix.lower()): caption = caption[len(prefix) :].strip() if caption[0].islower(): caption = caption[0].upper() + caption[1:] return caption return caption # ====================================================== # --merge-cmotion # ====================================================== CMOTION_TEXT = { "static": "The camera is static.", "dynamic": "The camera is moving.", "unknown": None, "zoom in": "The camera is zooming in.", "zoom out": "The camera is zooming out.", "pan left": "The camera is panning left.", "pan right": "The camera is panning right.", "tilt up": "The camera is tilting up.", "tilt down": "The camera is tilting down.", "pan/tilt": "The camera is panning.", } CMOTION_PROBS = { # hard-coded probabilities "static": 1.0, "dynamic": 1.0, "unknown": 0.0, "zoom in": 1.0, "zoom out": 1.0, "pan left": 1.0, "pan right": 1.0, "tilt up": 1.0, "tilt down": 1.0, "pan/tilt": 1.0, } def merge_cmotion(caption, cmotion): text = CMOTION_TEXT[cmotion] prob = CMOTION_PROBS[cmotion] if text is not None and random.random() < prob: caption = f"{caption} {text}" return caption # ====================================================== # --lang # ====================================================== def build_lang_detector(lang_to_detect): from lingua import Language, LanguageDetectorBuilder lang_dict = dict(en=Language.ENGLISH) assert lang_to_detect in lang_dict valid_lang = lang_dict[lang_to_detect] detector = LanguageDetectorBuilder.from_all_spoken_languages().with_low_accuracy_mode().build() def detect_lang(caption): confidence_values = detector.compute_language_confidence_values(caption) confidence = [x.language for x in confidence_values[:5]] if valid_lang not in confidence: return False return True return detect_lang # ====================================================== # --clean-caption # ====================================================== def basic_clean(text): import ftfy text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() BAD_PUNCT_REGEX = re.compile( r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}" ) # noqa def clean_caption(caption): import urllib.parse as ul from bs4 import BeautifulSoup caption = str(caption) caption = ul.unquote_plus(caption) caption = caption.strip().lower() caption = re.sub("", "person", caption) # urls: caption = re.sub( r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa "", caption, ) # regex for urls caption = re.sub( r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa "", caption, ) # regex for urls # html: caption = BeautifulSoup(caption, features="html.parser").text # @ caption = re.sub(r"@[\w\d]+\b", "", caption) # 31C0—31EF CJK Strokes # 31F0—31FF Katakana Phonetic Extensions # 3200—32FF Enclosed CJK Letters and Months # 3300—33FF CJK Compatibility # 3400—4DBF CJK Unified Ideographs Extension A # 4DC0—4DFF Yijing Hexagram Symbols # 4E00—9FFF CJK Unified Ideographs caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) caption = re.sub(r"[\u3200-\u32ff]+", "", caption) caption = re.sub(r"[\u3300-\u33ff]+", "", caption) caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) ####################################################### # все виды тире / all types of dash --> "-" caption = re.sub( r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa "-", caption, ) # кавычки к одному стандарту caption = re.sub(r"[`´«»“”¨]", '"', caption) caption = re.sub(r"[‘’]", "'", caption) # " caption = re.sub(r""?", "", caption) # & caption = re.sub(r"&", "", caption) # ip adresses: caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) # article ids: caption = re.sub(r"\d:\d\d\s+$", "", caption) # \n caption = re.sub(r"\\n", " ", caption) # "#123" caption = re.sub(r"#\d{1,3}\b", "", caption) # "#12345.." caption = re.sub(r"#\d{5,}\b", "", caption) # "123456.." caption = re.sub(r"\b\d{6,}\b", "", caption) # filenames: caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption) # caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT""" caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT""" caption = re.sub(BAD_PUNCT_REGEX, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT caption = re.sub(r"\s+\.\s+", r" ", caption) # " . " # this-is-my-cute-cat / this_is_my_cute_cat regex2 = re.compile(r"(?:\-|\_)") if len(re.findall(regex2, caption)) > 3: caption = re.sub(regex2, " ", caption) caption = basic_clean(caption) caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640 caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231 caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption) caption = re.sub(r"\bpage\s+\d+\b", "", caption) caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a... caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) caption = re.sub(r"\b\s+\:\s+", r": ", caption) caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) caption = re.sub(r"\s+", " ", caption) caption.strip() caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) caption = re.sub(r"^\.\S+$", "", caption) return caption.strip() def text_preprocessing(text, use_text_preprocessing: bool = True): if use_text_preprocessing: # The exact text cleaning as was in the training stage: text = clean_caption(text) text = clean_caption(text) return text else: return text.lower().strip() # ====================================================== # load caption # ====================================================== def load_caption(path, ext): try: assert ext in ["json"] json_path = path.split(".")[0] + ".json" with open(json_path, "r") as f: data = json.load(f) caption = data["caption"] return caption except: return "" # ====================================================== # read & write # ====================================================== def read_file(input_path): if input_path.endswith(".csv"): return pd.read_csv(input_path) elif input_path.endswith(".parquet"): return pd.read_parquet(input_path) else: raise NotImplementedError(f"Unsupported file format: {input_path}") def save_file(data, output_path): output_dir = os.path.dirname(output_path) if not os.path.exists(output_dir) and output_dir != "": os.makedirs(output_dir) if output_path.endswith(".csv"): return data.to_csv(output_path, index=False) elif output_path.endswith(".parquet"): return data.to_parquet(output_path, index=False) else: raise NotImplementedError(f"Unsupported file format: {output_path}") def read_data(input_paths): data = [] input_name = "" input_list = [] for input_path in input_paths: input_list.extend(glob(input_path)) print("Input files:", input_list) for i, input_path in enumerate(input_list): assert os.path.exists(input_path) data.append(read_file(input_path)) input_name += os.path.basename(input_path).split(".")[0] if i != len(input_list) - 1: input_name += "+" print(f"Loaded {len(data[-1])} samples from {input_path}.") data = pd.concat(data, ignore_index=True, sort=False) print(f"Total number of samples: {len(data)}.") return data, input_name # ====================================================== # main # ====================================================== # To add a new method, register it in the main, parse_args, and get_output_path functions, and update the doc at /tools/datasets/README.md#documentation def main(args): # reading data data, input_name = read_data(args.input) # make difference if args.difference is not None: data_diff = pd.read_csv(args.difference) print(f"Difference csv contains {len(data_diff)} samples.") data = data[~data["path"].isin(data_diff["path"])] input_name += f"-{os.path.basename(args.difference).split('.')[0]}" print(f"Filtered number of samples: {len(data)}.") # make intersection if args.intersection is not None: data_new = pd.read_csv(args.intersection) print(f"Intersection csv contains {len(data_new)} samples.") cols_to_use = data_new.columns.difference(data.columns) cols_to_use = cols_to_use.insert(0, "path") data = pd.merge(data, data_new[cols_to_use], on="path", how="inner") print(f"Intersection number of samples: {len(data)}.") # train columns if args.train_column: all_columns = data.columns columns_to_drop = all_columns.difference(TRAIN_COLUMNS) data = data.drop(columns=columns_to_drop) # get output path output_path = get_output_path(args, input_name) # preparation if args.lang is not None: detect_lang = build_lang_detector(args.lang) if args.count_num_token == "t5": from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("DeepFloyd/t5-v1_1-xxl") # IO-related if args.load_caption is not None: assert "path" in data.columns data["text"] = apply(data["path"], load_caption, ext=args.load_caption) if args.info: info = apply(data["path"], get_info) ( data["num_frames"], data["height"], data["width"], data["aspect_ratio"], data["fps"], data["resolution"], ) = zip(*info) if args.video_info: info = apply(data["path"], get_video_info) ( data["num_frames"], data["height"], data["width"], data["aspect_ratio"], data["fps"], data["resolution"], ) = zip(*info) if args.ext: assert "path" in data.columns data = data[apply(data["path"], os.path.exists)] # filtering if args.remove_url: assert "text" in data.columns data = data[~data["text"].str.contains(r"(?Phttps?://[^\s]+)", regex=True)] if args.lang is not None: assert "text" in data.columns data = data[data["text"].progress_apply(detect_lang)] # cannot parallelize if args.remove_empty_caption: assert "text" in data.columns data = data[data["text"].str.len() > 0] data = data[~data["text"].isna()] if args.remove_path_duplication: assert "path" in data.columns data = data.drop_duplicates(subset=["path"]) # processing if args.relpath is not None: data["path"] = apply(data["path"], lambda x: os.path.relpath(x, args.relpath)) if args.abspath is not None: data["path"] = apply(data["path"], lambda x: os.path.join(args.abspath, x)) if args.merge_cmotion: data["text"] = apply(data, lambda x: merge_cmotion(x["text"], x["cmotion"]), axis=1) if args.refine_llm_caption: assert "text" in data.columns data["text"] = apply(data["text"], remove_caption_prefix) if args.clean_caption: assert "text" in data.columns data["text"] = apply( data["text"], partial(text_preprocessing, use_text_preprocessing=True), ) if args.count_num_token is not None: assert "text" in data.columns data["text_len"] = apply(data["text"], lambda x: len(tokenizer(x)["input_ids"])) # sort if args.sort is not None: data = data.sort_values(by=args.sort, ascending=False) if args.sort_ascending is not None: data = data.sort_values(by=args.sort_ascending, ascending=True) # filtering if args.remove_empty_caption: assert "text" in data.columns data = data[data["text"].str.len() > 0] data = data[~data["text"].isna()] if args.fmin is not None: assert "num_frames" in data.columns data = data[data["num_frames"] >= args.fmin] if args.fmax is not None: assert "num_frames" in data.columns data = data[data["num_frames"] <= args.fmax] if args.hwmax is not None: if "resolution" not in data.columns: height = data["height"] width = data["width"] data["resolution"] = height * width data = data[data["resolution"] <= args.hwmax] if args.aesmin is not None: assert "aes" in data.columns data = data[data["aes"] >= args.aesmin] if args.matchmin is not None: assert "match" in data.columns data = data[data["match"] >= args.matchmin] if args.flowmin is not None: assert "flow" in data.columns data = data[data["flow"] >= args.flowmin] if args.remove_text_duplication: data = data.drop_duplicates(subset=["text"], keep="first") print(f"Filtered number of samples: {len(data)}.") # shard data if args.shard is not None: sharded_data = np.array_split(data, args.shard) for i in range(args.shard): output_path_part = output_path.split(".") output_path_s = ".".join(output_path_part[:-1]) + f"_{i}." + output_path_part[-1] save_file(sharded_data[i], output_path_s) print(f"Saved {len(sharded_data[i])} samples to {output_path_s}.") else: save_file(data, output_path) print(f"Saved {len(data)} samples to {output_path}.") def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("input", type=str, nargs="+", help="path to the input dataset") parser.add_argument("--output", type=str, default=None, help="output path") parser.add_argument("--format", type=str, default="csv", help="output format", choices=["csv", "parquet"]) parser.add_argument("--disable-parallel", action="store_true", help="disable parallel processing") parser.add_argument("--num-workers", type=int, default=None, help="number of workers") parser.add_argument("--seed", type=int, default=None, help="random seed") # special case parser.add_argument("--shard", type=int, default=None, help="shard the dataset") parser.add_argument("--sort", type=str, default=None, help="sort by column") parser.add_argument("--sort-ascending", type=str, default=None, help="sort by column (ascending order)") parser.add_argument("--difference", type=str, default=None, help="get difference from the dataset") parser.add_argument( "--intersection", type=str, default=None, help="keep the paths in csv from the dataset and merge columns" ) parser.add_argument("--train-column", action="store_true", help="only keep the train column") # IO-related parser.add_argument("--info", action="store_true", help="get the basic information of each video and image") parser.add_argument("--video-info", action="store_true", help="get the basic information of each video") parser.add_argument("--ext", action="store_true", help="check if the file exists") parser.add_argument( "--load-caption", type=str, default=None, choices=["json", "txt"], help="load the caption from json or txt" ) # path processing parser.add_argument("--relpath", type=str, default=None, help="modify the path to relative path by root given") parser.add_argument("--abspath", type=str, default=None, help="modify the path to absolute path by root given") # caption filtering parser.add_argument( "--remove-empty-caption", action="store_true", help="remove rows with empty caption", ) parser.add_argument("--remove-url", action="store_true", help="remove rows with url in caption") parser.add_argument("--lang", type=str, default=None, help="remove rows with other language") parser.add_argument("--remove-path-duplication", action="store_true", help="remove rows with duplicated path") parser.add_argument("--remove-text-duplication", action="store_true", help="remove rows with duplicated caption") # caption processing parser.add_argument("--refine-llm-caption", action="store_true", help="modify the caption generated by LLM") parser.add_argument( "--clean-caption", action="store_true", help="modify the caption according to T5 pipeline to suit training" ) parser.add_argument("--merge-cmotion", action="store_true", help="merge the camera motion to the caption") parser.add_argument( "--count-num-token", type=str, choices=["t5"], default=None, help="Count the number of tokens in the caption" ) # score filtering parser.add_argument("--fmin", type=int, default=None, help="filter the dataset by minimum number of frames") parser.add_argument("--fmax", type=int, default=None, help="filter the dataset by maximum number of frames") parser.add_argument("--hwmax", type=int, default=None, help="filter the dataset by maximum resolution") parser.add_argument("--aesmin", type=float, default=None, help="filter the dataset by minimum aes score") parser.add_argument("--matchmin", type=float, default=None, help="filter the dataset by minimum match score") parser.add_argument("--flowmin", type=float, default=None, help="filter the dataset by minimum flow score") return parser.parse_args() def get_output_path(args, input_name): if args.output is not None: return args.output name = input_name dir_path = os.path.dirname(args.input[0]) # sort if args.sort is not None: assert args.sort_ascending is None name += "_sort" if args.sort_ascending is not None: assert args.sort is None name += "_sort" # IO-related # for IO-related, the function must be wrapped in try-except if args.info: name += "_info" if args.video_info: name += "_vinfo" if args.ext: name += "_ext" if args.load_caption: name += f"_load{args.load_caption}" # path processing if args.relpath is not None: name += "_relpath" if args.abspath is not None: name += "_abspath" # caption filtering if args.remove_empty_caption: name += "_noempty" if args.remove_url: name += "_nourl" if args.lang is not None: name += f"_{args.lang}" if args.remove_path_duplication: name += "_noduppath" if args.remove_text_duplication: name += "_noduptext" # caption processing if args.refine_llm_caption: name += "_llm" if args.clean_caption: name += "_clean" if args.merge_cmotion: name += "_cmcaption" if args.count_num_token: name += "_ntoken" # score filtering if args.fmin is not None: name += f"_fmin{args.fmin}" if args.fmax is not None: name += f"_fmax{args.fmax}" if args.hwmax is not None: name += f"_hwmax{args.hwmax}" if args.aesmin is not None: name += f"_aesmin{args.aesmin}" if args.matchmin is not None: name += f"_matchmin{args.matchmin}" if args.flowmin is not None: name += f"_flowmin{args.flowmin}" output_path = os.path.join(dir_path, f"{name}.{args.format}") return output_path if __name__ == "__main__": args = parse_args() if args.disable_parallel: PANDA_USE_PARALLEL = False if PANDA_USE_PARALLEL: if args.num_workers is not None: pandarallel.initialize(nb_workers=args.num_workers, progress_bar=True) else: pandarallel.initialize(progress_bar=True) if args.seed is not None: random.seed(args.seed) np.random.seed(args.seed) main(args)