import argparse
import html
import json
import os
import random
import re
from functools import partial
from glob import glob
import cv2
import numpy as np
import pandas as pd
import torchvision
from tqdm import tqdm
from .utils import IMG_EXTENSIONS
tqdm.pandas()
try:
from pandarallel import pandarallel
PANDA_USE_PARALLEL = True
except ImportError:
PANDA_USE_PARALLEL = False
def apply(df, func, **kwargs):
if PANDA_USE_PARALLEL:
return df.parallel_apply(func, **kwargs)
return df.progress_apply(func, **kwargs)
TRAIN_COLUMNS = ["path", "text", "num_frames", "fps", "height", "width", "aspect_ratio", "resolution", "text_len"]
# ======================================================
# --info
# ======================================================
def get_video_length(cap, method="header"):
assert method in ["header", "set"]
if method == "header":
length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
else:
cap.set(cv2.CAP_PROP_POS_AVI_RATIO, 1)
length = int(cap.get(cv2.CAP_PROP_POS_FRAMES))
return length
def get_info(path):
try:
ext = os.path.splitext(path)[1].lower()
if ext in IMG_EXTENSIONS:
im = cv2.imread(path)
if im is None:
return 0, 0, 0, np.nan, np.nan
height, width = im.shape[:2]
num_frames, fps = 1, np.nan
else:
cap = cv2.VideoCapture(path)
num_frames, height, width, fps = (
get_video_length(cap, method="header"),
int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)),
int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
float(cap.get(cv2.CAP_PROP_FPS)),
)
hw = height * width
aspect_ratio = height / width if width > 0 else np.nan
return num_frames, height, width, aspect_ratio, fps, hw
except:
return 0, 0, 0, np.nan, np.nan, np.nan
def get_video_info(path):
try:
vframes, _, _ = torchvision.io.read_video(filename=path, pts_unit="sec", output_format="TCHW")
num_frames, height, width = vframes.shape[0], vframes.shape[2], vframes.shape[3]
aspect_ratio = height / width
fps = np.nan
resolution = height * width
return num_frames, height, width, aspect_ratio, fps, resolution
except:
return 0, 0, 0, np.nan, np.nan, np.nan
# ======================================================
# --refine-llm-caption
# ======================================================
LLAVA_PREFIX = [
"The video shows",
"The video captures",
"The video features",
"The video depicts",
"The video presents",
"The video features",
"The video is ",
"In the video,",
"The image shows",
"The image captures",
"The image features",
"The image depicts",
"The image presents",
"The image features",
"The image is ",
"The image portrays",
"In the image,",
]
def remove_caption_prefix(caption):
for prefix in LLAVA_PREFIX:
if caption.startswith(prefix) or caption.startswith(prefix.lower()):
caption = caption[len(prefix) :].strip()
if caption[0].islower():
caption = caption[0].upper() + caption[1:]
return caption
return caption
# ======================================================
# --merge-cmotion
# ======================================================
CMOTION_TEXT = {
"static": "The camera is static.",
"dynamic": "The camera is moving.",
"unknown": None,
"zoom in": "The camera is zooming in.",
"zoom out": "The camera is zooming out.",
"pan left": "The camera is panning left.",
"pan right": "The camera is panning right.",
"tilt up": "The camera is tilting up.",
"tilt down": "The camera is tilting down.",
"pan/tilt": "The camera is panning.",
}
CMOTION_PROBS = {
# hard-coded probabilities
"static": 1.0,
"dynamic": 1.0,
"unknown": 0.0,
"zoom in": 1.0,
"zoom out": 1.0,
"pan left": 1.0,
"pan right": 1.0,
"tilt up": 1.0,
"tilt down": 1.0,
"pan/tilt": 1.0,
}
def merge_cmotion(caption, cmotion):
text = CMOTION_TEXT[cmotion]
prob = CMOTION_PROBS[cmotion]
if text is not None and random.random() < prob:
caption = f"{caption} {text}"
return caption
# ======================================================
# --lang
# ======================================================
def build_lang_detector(lang_to_detect):
from lingua import Language, LanguageDetectorBuilder
lang_dict = dict(en=Language.ENGLISH)
assert lang_to_detect in lang_dict
valid_lang = lang_dict[lang_to_detect]
detector = LanguageDetectorBuilder.from_all_spoken_languages().with_low_accuracy_mode().build()
def detect_lang(caption):
confidence_values = detector.compute_language_confidence_values(caption)
confidence = [x.language for x in confidence_values[:5]]
if valid_lang not in confidence:
return False
return True
return detect_lang
# ======================================================
# --clean-caption
# ======================================================
def basic_clean(text):
import ftfy
text = ftfy.fix_text(text)
text = html.unescape(html.unescape(text))
return text.strip()
BAD_PUNCT_REGEX = re.compile(
r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}"
) # noqa
def clean_caption(caption):
import urllib.parse as ul
from bs4 import BeautifulSoup
caption = str(caption)
caption = ul.unquote_plus(caption)
caption = caption.strip().lower()
caption = re.sub("", "person", caption)
# urls:
caption = re.sub(
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
caption = re.sub(
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
# html:
caption = BeautifulSoup(caption, features="html.parser").text
# @
caption = re.sub(r"@[\w\d]+\b", "", caption)
# 31C0—31EF CJK Strokes
# 31F0—31FF Katakana Phonetic Extensions
# 3200—32FF Enclosed CJK Letters and Months
# 3300—33FF CJK Compatibility
# 3400—4DBF CJK Unified Ideographs Extension A
# 4DC0—4DFF Yijing Hexagram Symbols
# 4E00—9FFF CJK Unified Ideographs
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
#######################################################
# все виды тире / all types of dash --> "-"
caption = re.sub(
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
"-",
caption,
)
# кавычки к одному стандарту
caption = re.sub(r"[`´«»“”¨]", '"', caption)
caption = re.sub(r"[‘’]", "'", caption)
# "
caption = re.sub(r""?", "", caption)
# &
caption = re.sub(r"&", "", caption)
# ip adresses:
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
# article ids:
caption = re.sub(r"\d:\d\d\s+$", "", caption)
# \n
caption = re.sub(r"\\n", " ", caption)
# "#123"
caption = re.sub(r"#\d{1,3}\b", "", caption)
# "#12345.."
caption = re.sub(r"#\d{5,}\b", "", caption)
# "123456.."
caption = re.sub(r"\b\d{6,}\b", "", caption)
# filenames:
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
#
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
caption = re.sub(BAD_PUNCT_REGEX, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
# this-is-my-cute-cat / this_is_my_cute_cat
regex2 = re.compile(r"(?:\-|\_)")
if len(re.findall(regex2, caption)) > 3:
caption = re.sub(regex2, " ", caption)
caption = basic_clean(caption)
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
caption = re.sub(r"\s+", " ", caption)
caption.strip()
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
caption = re.sub(r"^\.\S+$", "", caption)
return caption.strip()
def text_preprocessing(text, use_text_preprocessing: bool = True):
if use_text_preprocessing:
# The exact text cleaning as was in the training stage:
text = clean_caption(text)
text = clean_caption(text)
return text
else:
return text.lower().strip()
# ======================================================
# load caption
# ======================================================
def load_caption(path, ext):
try:
assert ext in ["json"]
json_path = path.split(".")[0] + ".json"
with open(json_path, "r") as f:
data = json.load(f)
caption = data["caption"]
return caption
except:
return ""
# ======================================================
# read & write
# ======================================================
def read_file(input_path):
if input_path.endswith(".csv"):
return pd.read_csv(input_path)
elif input_path.endswith(".parquet"):
return pd.read_parquet(input_path)
else:
raise NotImplementedError(f"Unsupported file format: {input_path}")
def save_file(data, output_path):
output_dir = os.path.dirname(output_path)
if not os.path.exists(output_dir) and output_dir != "":
os.makedirs(output_dir)
if output_path.endswith(".csv"):
return data.to_csv(output_path, index=False)
elif output_path.endswith(".parquet"):
return data.to_parquet(output_path, index=False)
else:
raise NotImplementedError(f"Unsupported file format: {output_path}")
def read_data(input_paths):
data = []
input_name = ""
input_list = []
for input_path in input_paths:
input_list.extend(glob(input_path))
print("Input files:", input_list)
for i, input_path in enumerate(input_list):
assert os.path.exists(input_path)
data.append(read_file(input_path))
input_name += os.path.basename(input_path).split(".")[0]
if i != len(input_list) - 1:
input_name += "+"
print(f"Loaded {len(data[-1])} samples from {input_path}.")
data = pd.concat(data, ignore_index=True, sort=False)
print(f"Total number of samples: {len(data)}.")
return data, input_name
# ======================================================
# main
# ======================================================
# To add a new method, register it in the main, parse_args, and get_output_path functions, and update the doc at /tools/datasets/README.md#documentation
def main(args):
# reading data
data, input_name = read_data(args.input)
# make difference
if args.difference is not None:
data_diff = pd.read_csv(args.difference)
print(f"Difference csv contains {len(data_diff)} samples.")
data = data[~data["path"].isin(data_diff["path"])]
input_name += f"-{os.path.basename(args.difference).split('.')[0]}"
print(f"Filtered number of samples: {len(data)}.")
# make intersection
if args.intersection is not None:
data_new = pd.read_csv(args.intersection)
print(f"Intersection csv contains {len(data_new)} samples.")
cols_to_use = data_new.columns.difference(data.columns)
cols_to_use = cols_to_use.insert(0, "path")
data = pd.merge(data, data_new[cols_to_use], on="path", how="inner")
print(f"Intersection number of samples: {len(data)}.")
# train columns
if args.train_column:
all_columns = data.columns
columns_to_drop = all_columns.difference(TRAIN_COLUMNS)
data = data.drop(columns=columns_to_drop)
# get output path
output_path = get_output_path(args, input_name)
# preparation
if args.lang is not None:
detect_lang = build_lang_detector(args.lang)
if args.count_num_token == "t5":
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("DeepFloyd/t5-v1_1-xxl")
# IO-related
if args.load_caption is not None:
assert "path" in data.columns
data["text"] = apply(data["path"], load_caption, ext=args.load_caption)
if args.info:
info = apply(data["path"], get_info)
(
data["num_frames"],
data["height"],
data["width"],
data["aspect_ratio"],
data["fps"],
data["resolution"],
) = zip(*info)
if args.video_info:
info = apply(data["path"], get_video_info)
(
data["num_frames"],
data["height"],
data["width"],
data["aspect_ratio"],
data["fps"],
data["resolution"],
) = zip(*info)
if args.ext:
assert "path" in data.columns
data = data[apply(data["path"], os.path.exists)]
# filtering
if args.remove_url:
assert "text" in data.columns
data = data[~data["text"].str.contains(r"(?Phttps?://[^\s]+)", regex=True)]
if args.lang is not None:
assert "text" in data.columns
data = data[data["text"].progress_apply(detect_lang)] # cannot parallelize
if args.remove_empty_caption:
assert "text" in data.columns
data = data[data["text"].str.len() > 0]
data = data[~data["text"].isna()]
if args.remove_path_duplication:
assert "path" in data.columns
data = data.drop_duplicates(subset=["path"])
# processing
if args.relpath is not None:
data["path"] = apply(data["path"], lambda x: os.path.relpath(x, args.relpath))
if args.abspath is not None:
data["path"] = apply(data["path"], lambda x: os.path.join(args.abspath, x))
if args.merge_cmotion:
data["text"] = apply(data, lambda x: merge_cmotion(x["text"], x["cmotion"]), axis=1)
if args.refine_llm_caption:
assert "text" in data.columns
data["text"] = apply(data["text"], remove_caption_prefix)
if args.clean_caption:
assert "text" in data.columns
data["text"] = apply(
data["text"],
partial(text_preprocessing, use_text_preprocessing=True),
)
if args.count_num_token is not None:
assert "text" in data.columns
data["text_len"] = apply(data["text"], lambda x: len(tokenizer(x)["input_ids"]))
# sort
if args.sort is not None:
data = data.sort_values(by=args.sort, ascending=False)
if args.sort_ascending is not None:
data = data.sort_values(by=args.sort_ascending, ascending=True)
# filtering
if args.remove_empty_caption:
assert "text" in data.columns
data = data[data["text"].str.len() > 0]
data = data[~data["text"].isna()]
if args.fmin is not None:
assert "num_frames" in data.columns
data = data[data["num_frames"] >= args.fmin]
if args.fmax is not None:
assert "num_frames" in data.columns
data = data[data["num_frames"] <= args.fmax]
if args.hwmax is not None:
if "resolution" not in data.columns:
height = data["height"]
width = data["width"]
data["resolution"] = height * width
data = data[data["resolution"] <= args.hwmax]
if args.aesmin is not None:
assert "aes" in data.columns
data = data[data["aes"] >= args.aesmin]
if args.matchmin is not None:
assert "match" in data.columns
data = data[data["match"] >= args.matchmin]
if args.flowmin is not None:
assert "flow" in data.columns
data = data[data["flow"] >= args.flowmin]
if args.remove_text_duplication:
data = data.drop_duplicates(subset=["text"], keep="first")
print(f"Filtered number of samples: {len(data)}.")
# shard data
if args.shard is not None:
sharded_data = np.array_split(data, args.shard)
for i in range(args.shard):
output_path_part = output_path.split(".")
output_path_s = ".".join(output_path_part[:-1]) + f"_{i}." + output_path_part[-1]
save_file(sharded_data[i], output_path_s)
print(f"Saved {len(sharded_data[i])} samples to {output_path_s}.")
else:
save_file(data, output_path)
print(f"Saved {len(data)} samples to {output_path}.")
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("input", type=str, nargs="+", help="path to the input dataset")
parser.add_argument("--output", type=str, default=None, help="output path")
parser.add_argument("--format", type=str, default="csv", help="output format", choices=["csv", "parquet"])
parser.add_argument("--disable-parallel", action="store_true", help="disable parallel processing")
parser.add_argument("--num-workers", type=int, default=None, help="number of workers")
parser.add_argument("--seed", type=int, default=None, help="random seed")
# special case
parser.add_argument("--shard", type=int, default=None, help="shard the dataset")
parser.add_argument("--sort", type=str, default=None, help="sort by column")
parser.add_argument("--sort-ascending", type=str, default=None, help="sort by column (ascending order)")
parser.add_argument("--difference", type=str, default=None, help="get difference from the dataset")
parser.add_argument(
"--intersection", type=str, default=None, help="keep the paths in csv from the dataset and merge columns"
)
parser.add_argument("--train-column", action="store_true", help="only keep the train column")
# IO-related
parser.add_argument("--info", action="store_true", help="get the basic information of each video and image")
parser.add_argument("--video-info", action="store_true", help="get the basic information of each video")
parser.add_argument("--ext", action="store_true", help="check if the file exists")
parser.add_argument(
"--load-caption", type=str, default=None, choices=["json", "txt"], help="load the caption from json or txt"
)
# path processing
parser.add_argument("--relpath", type=str, default=None, help="modify the path to relative path by root given")
parser.add_argument("--abspath", type=str, default=None, help="modify the path to absolute path by root given")
# caption filtering
parser.add_argument(
"--remove-empty-caption",
action="store_true",
help="remove rows with empty caption",
)
parser.add_argument("--remove-url", action="store_true", help="remove rows with url in caption")
parser.add_argument("--lang", type=str, default=None, help="remove rows with other language")
parser.add_argument("--remove-path-duplication", action="store_true", help="remove rows with duplicated path")
parser.add_argument("--remove-text-duplication", action="store_true", help="remove rows with duplicated caption")
# caption processing
parser.add_argument("--refine-llm-caption", action="store_true", help="modify the caption generated by LLM")
parser.add_argument(
"--clean-caption", action="store_true", help="modify the caption according to T5 pipeline to suit training"
)
parser.add_argument("--merge-cmotion", action="store_true", help="merge the camera motion to the caption")
parser.add_argument(
"--count-num-token", type=str, choices=["t5"], default=None, help="Count the number of tokens in the caption"
)
# score filtering
parser.add_argument("--fmin", type=int, default=None, help="filter the dataset by minimum number of frames")
parser.add_argument("--fmax", type=int, default=None, help="filter the dataset by maximum number of frames")
parser.add_argument("--hwmax", type=int, default=None, help="filter the dataset by maximum resolution")
parser.add_argument("--aesmin", type=float, default=None, help="filter the dataset by minimum aes score")
parser.add_argument("--matchmin", type=float, default=None, help="filter the dataset by minimum match score")
parser.add_argument("--flowmin", type=float, default=None, help="filter the dataset by minimum flow score")
return parser.parse_args()
def get_output_path(args, input_name):
if args.output is not None:
return args.output
name = input_name
dir_path = os.path.dirname(args.input[0])
# sort
if args.sort is not None:
assert args.sort_ascending is None
name += "_sort"
if args.sort_ascending is not None:
assert args.sort is None
name += "_sort"
# IO-related
# for IO-related, the function must be wrapped in try-except
if args.info:
name += "_info"
if args.video_info:
name += "_vinfo"
if args.ext:
name += "_ext"
if args.load_caption:
name += f"_load{args.load_caption}"
# path processing
if args.relpath is not None:
name += "_relpath"
if args.abspath is not None:
name += "_abspath"
# caption filtering
if args.remove_empty_caption:
name += "_noempty"
if args.remove_url:
name += "_nourl"
if args.lang is not None:
name += f"_{args.lang}"
if args.remove_path_duplication:
name += "_noduppath"
if args.remove_text_duplication:
name += "_noduptext"
# caption processing
if args.refine_llm_caption:
name += "_llm"
if args.clean_caption:
name += "_clean"
if args.merge_cmotion:
name += "_cmcaption"
if args.count_num_token:
name += "_ntoken"
# score filtering
if args.fmin is not None:
name += f"_fmin{args.fmin}"
if args.fmax is not None:
name += f"_fmax{args.fmax}"
if args.hwmax is not None:
name += f"_hwmax{args.hwmax}"
if args.aesmin is not None:
name += f"_aesmin{args.aesmin}"
if args.matchmin is not None:
name += f"_matchmin{args.matchmin}"
if args.flowmin is not None:
name += f"_flowmin{args.flowmin}"
output_path = os.path.join(dir_path, f"{name}.{args.format}")
return output_path
if __name__ == "__main__":
args = parse_args()
if args.disable_parallel:
PANDA_USE_PARALLEL = False
if PANDA_USE_PARALLEL:
if args.num_workers is not None:
pandarallel.initialize(nb_workers=args.num_workers, progress_bar=True)
else:
pandarallel.initialize(progress_bar=True)
if args.seed is not None:
random.seed(args.seed)
np.random.seed(args.seed)
main(args)