Barani1-t commited on
Commit
2ee142b
·
1 Parent(s): c680c9d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -1
app.py CHANGED
@@ -9,12 +9,14 @@ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Proce
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
  # load speech translation checkpoint
 
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
  processor = SpeechT5Processor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
16
 
17
  model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
 
18
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
@@ -22,6 +24,8 @@ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze
22
 
23
 
24
  def translate(audio):
 
 
25
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"language": "nl","task": "transcribe"})
26
  return outputs["text"]
27
 
@@ -69,4 +73,4 @@ file_translate = gr.Interface(
69
  with demo:
70
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
71
 
72
- demo.launch()
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
  # load speech translation checkpoint
12
+
13
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
14
 
15
  # load text-to-speech checkpoint and speaker embeddings
16
  processor = SpeechT5Processor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
17
 
18
  model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
19
+
20
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
21
 
22
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
 
24
 
25
 
26
  def translate(audio):
27
+ print(audio)
28
+ audio = librosa.resample(audio, orig_sr=22050, target_sr=16000)
29
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"language": "nl","task": "transcribe"})
30
  return outputs["text"]
31
 
 
73
  with demo:
74
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
75
 
76
+ demo.launch(share=True)