Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,8 @@ import torch
|
|
4 |
from datasets import load_dataset
|
5 |
import librosa
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
|
|
|
|
7 |
|
8 |
target_dtype = np.int16
|
9 |
max_range = np.iinfo(target_dtype).max
|
@@ -23,19 +25,28 @@ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(devic
|
|
23 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
24 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
25 |
|
|
|
|
|
|
|
26 |
|
27 |
def translate(audio):
|
28 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"language": "nl","task": "transcribe"})
|
29 |
return outputs["text"]
|
30 |
|
31 |
|
32 |
-
def
|
33 |
inputs = processor(text=text, padding='max_length', truncation=True,max_length=600,return_tensors="pt")
|
34 |
print(inputs)
|
35 |
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device),vocoder=vocoder)
|
36 |
return speech.cpu()
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
def speech_to_speech_translation(audio):
|
40 |
sampling_rate = 16000
|
41 |
data_array,samplerate = librosa.load(audio)
|
|
|
4 |
from datasets import load_dataset
|
5 |
import librosa
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
+
from transformers import VitsModel, VitsTokenizer
|
8 |
+
|
9 |
|
10 |
target_dtype = np.int16
|
11 |
max_range = np.iinfo(target_dtype).max
|
|
|
25 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
26 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
27 |
|
28 |
+
model_mms = VitsModel.from_pretrained("facebook/mms-tts-nld")
|
29 |
+
tokenizer_mms = VitsTokenizer.from_pretrained("facebook/mms-tts-nld")
|
30 |
+
|
31 |
|
32 |
def translate(audio):
|
33 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"language": "nl","task": "transcribe"})
|
34 |
return outputs["text"]
|
35 |
|
36 |
|
37 |
+
def synthesise_speechT5(text):
|
38 |
inputs = processor(text=text, padding='max_length', truncation=True,max_length=600,return_tensors="pt")
|
39 |
print(inputs)
|
40 |
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device),vocoder=vocoder)
|
41 |
return speech.cpu()
|
42 |
|
43 |
+
def synthesise(text):
|
44 |
+
inputs = tokenizer_mms(text, return_tensors="pt")
|
45 |
+
input_ids = inputs["input_ids"]
|
46 |
+
with torch.no_grad():
|
47 |
+
outputs = model_mms(input_ids)
|
48 |
+
return speech = outputs["waveform"]
|
49 |
+
|
50 |
def speech_to_speech_translation(audio):
|
51 |
sampling_rate = 16000
|
52 |
data_array,samplerate = librosa.load(audio)
|