## chatGPT with Gradio 起手式 ## 在你的資料夾新增 .env 檔案,並在裡面寫入 API_KEY=你的API金鑰 import os import openai import gradio as gr from dotenv import load_dotenv, find_dotenv _ = load_dotenv(find_dotenv()) # read local .env file API_KEY = os.environ['OPENAI_API_KEY'] print (API_KEY) ## AI 建議 def get_advice(bmi,temp, API_KEY, model="gpt-3.5-turbo"): openai.api_key = API_KEY messages = [{"role": "system", "content": "You can provide some dietary advice based on \ the user's BMI value. You can only give up to 3 suggestions"}, {"role": "user", "content": f'My BMI is {bmi}. What can I do to be healthier?'},] response = openai.chat.completions.create( model=model, max_tokens=200, messages=messages, temperature=temp, # this is the degree of randomness of the model's output ) return response.choices[0].message.content ## 健身計畫 def get_gym(bmi,slide, temp, API_KEY, model="gpt-3.5-turbo"): openai.api_key = API_KEY messages = [{"role": "system", "content": "You are a great fitness coach and \ you will give users great fitness plans."}, {"role": "user", "content": f'My BMI is {bmi}. I want a {slide}-point weight\ loss plan, from 1 to 10. The higher the number, the faster the weight loss.'},] response = openai.chat.completions.create( model=model, max_tokens=200, messages=messages, temperature=temp, # this is the degree of randomness of the model's output ) return response.choices[0].message.content def BMI(height, weight) -> int: height = int(height) / 100 bmi = int(weight) / (height * height) if bmi < 18.5: return str(bmi)[:5], "過輕" elif bmi < 24: return str(bmi)[:5], "正常" elif bmi < 27: return str(bmi)[:5], "過重" elif bmi < 30: return str(bmi)[:5], "輕度肥胖" elif bmi < 35: return str(bmi)[:5], "中度肥胖" else: return str(bmi)[:5], "重度肥胖" # 建立 components height = gr.Textbox( label="身高", info="輸入你的身高(cm)", placeholder="Type your hiegh here...") weight = gr.Textbox( label="體重", info="輸入你的體重(kg)", placeholder="Type your weight here...",) output_bmi = gr.Textbox( value="", label="BMI 值", info="顯示BMI 數字", placeholder="BMI") output_state = gr.Textbox( value="", label="BMI 結果", info="診斷", placeholder="顯示診斷結果") advice = gr.Textbox( label="AI Advice", info="請選擇以下按鈕讓AI 根據你的BMI值給予的建議", placeholder="Ouput Text here...", lines=5,) btn = gr.Button( value="計算BMI值", variant="primary", scale=1) btn_advice = gr.Button( value="AI 建議", variant="primary", scale=2) btn_gym = gr.Button( value="AI 健身計畫", variant="primary", scale=1) key_box = gr.Textbox( label="Enter your API key", info="You have to provide your own OPENAI_API_KEY for this app to function properly", placeholder="Type OpenAI API KEY here...", type="password") slider = gr.Slider( minimum=1, maximum=10, step=1, label="減重速度", value=5, info="請選擇你的減重速度,數字越大,減重越快", ) temperature = gr.Slider( minimum=0, maximum=1.0, value=0.3, step=0.05, label="Temperature", info=( "Temperature controls the degree of randomness in token selection. Lower " "temperatures are good for prompts that expect a true or correct response, " "while higher temperatures can lead to more diverse or unexpected results. " ), ) with gr.Blocks() as demo: gr.Markdown(""" # BMI 計算器 簡易測量你的BMI值 """) with gr.Column(): with gr.Row(): height.render() # 顯示身高輸入框 weight.render() # 顯示體重輸入框 with gr.Row(): output_bmi.render() # 顯示BMI值結果 output_state.render() # 顯示BMI診斷結果 btn.render() # 顯示計算BMI值按鈕 btn.click(fn=BMI, inputs=[height, weight], outputs=[output_bmi,output_state]) advice.render() # 顯示AI建議結果的文字框 with gr.Row(): key_box.render() # 顯示API金鑰輸入框 btn_advice.render() # 顯示AI建議按鈕 btn_advice.click(fn=get_advice, inputs=[output_bmi,temperature,key_box], outputs=advice) btn_gym.render() # 顯示AI健身計畫按鈕 btn_gym.click(fn=get_gym, inputs=[output_bmi,slider,temperature, key_box], outputs=advice) with gr.Accordion("settings", open=True): slider.render() temperature.render() demo.launch()