Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
2 |
import torch
|
3 |
-
from PIL import Image
|
4 |
import gradio as gr
|
5 |
-
import requests
|
6 |
-
import random
|
7 |
|
8 |
def detect_objects(image):
|
9 |
# Load the pre-trained DETR model
|
@@ -18,13 +18,6 @@ def detect_objects(image):
|
|
18 |
target_sizes = torch.tensor([image.size[::-1]])
|
19 |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
20 |
|
21 |
-
# Draw bounding boxes and labels on the image
|
22 |
-
#draw = ImageDraw.Draw(image)
|
23 |
-
#for i, (score, label, box) in enumerate(zip(results["scores"], results["labels"], results["boxes"])):
|
24 |
-
# box = [round(i, 2) for i in box.tolist()]
|
25 |
-
# color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
|
26 |
-
# draw.rectangle(box, outline=color, width=3)
|
27 |
-
# draw.text((box[0], box[1]), model.config.id2label[label.item()], fill=color)
|
28 |
res = []
|
29 |
for label in results["labels"]:
|
30 |
res.append(model.config.id2label[label.item()])
|
|
|
1 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
2 |
import torch
|
3 |
+
from PIL import Image
|
4 |
import gradio as gr
|
5 |
+
# import requests
|
6 |
+
# import random
|
7 |
|
8 |
def detect_objects(image):
|
9 |
# Load the pre-trained DETR model
|
|
|
18 |
target_sizes = torch.tensor([image.size[::-1]])
|
19 |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
res = []
|
22 |
for label in results["labels"]:
|
23 |
res.append(model.config.id2label[label.item()])
|