BasToTheMax commited on
Commit
60e034d
·
verified ·
1 Parent(s): a287077

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -10
app.py CHANGED
@@ -1,9 +1,9 @@
1
  from transformers import DetrImageProcessor, DetrForObjectDetection
2
  import torch
3
- from PIL import Image, ImageDraw
4
  import gradio as gr
5
- import requests
6
- import random
7
 
8
  def detect_objects(image):
9
  # Load the pre-trained DETR model
@@ -18,13 +18,6 @@ def detect_objects(image):
18
  target_sizes = torch.tensor([image.size[::-1]])
19
  results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
20
 
21
- # Draw bounding boxes and labels on the image
22
- #draw = ImageDraw.Draw(image)
23
- #for i, (score, label, box) in enumerate(zip(results["scores"], results["labels"], results["boxes"])):
24
- # box = [round(i, 2) for i in box.tolist()]
25
- # color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
26
- # draw.rectangle(box, outline=color, width=3)
27
- # draw.text((box[0], box[1]), model.config.id2label[label.item()], fill=color)
28
  res = []
29
  for label in results["labels"]:
30
  res.append(model.config.id2label[label.item()])
 
1
  from transformers import DetrImageProcessor, DetrForObjectDetection
2
  import torch
3
+ from PIL import Image
4
  import gradio as gr
5
+ # import requests
6
+ # import random
7
 
8
  def detect_objects(image):
9
  # Load the pre-trained DETR model
 
18
  target_sizes = torch.tensor([image.size[::-1]])
19
  results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
20
 
 
 
 
 
 
 
 
21
  res = []
22
  for label in results["labels"]:
23
  res.append(model.config.id2label[label.item()])