from transformers import DetrImageProcessor, DetrForObjectDetection import torch from PIL import Image import gradio as gr def detect_objects(image): # Load the pre-trained DETR model processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-101") model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-101") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) # convert outputs (bounding boxes and class logits) to COCO API # let's only keep detections with score > 0.9 target_sizes = torch.tensor([image.size[::-1]]) results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] res = [] for label in results["labels"]: res.append(model.config.id2label[label.item()]) return ','.join(res) def upload_image(file): image = Image.open(file.name) image_with_boxes = detect_objects(image) return image_with_boxes iface = gr.Interface( fn=upload_image, inputs="file", outputs="text", title="Object Detection", description="Upload an image and detect objects using DETR model.", flagging_mode="never" ) iface.launch()