Create quran_search.py
Browse files- tools/quran_search.py +40 -0
tools/quran_search.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
class QuranSearchEngine:
|
7 |
+
def __init__(self):
|
8 |
+
self.data_loaded = False
|
9 |
+
|
10 |
+
def load_data(self):
|
11 |
+
"""Lazy load data and model"""
|
12 |
+
if not self.data_loaded:
|
13 |
+
# Load Quran data
|
14 |
+
self.quran_df = pd.read_csv("https://raw.githubusercontent.com/mafahim/quran-json/main/quran_clean.csv")
|
15 |
+
|
16 |
+
# Load model
|
17 |
+
self.model = SentenceTransformer(
|
18 |
+
'sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2'
|
19 |
+
)
|
20 |
+
|
21 |
+
# Pre-compute embeddings
|
22 |
+
self.verse_embeddings = self.model.encode(self.quran_df['text'].tolist())
|
23 |
+
self.data_loaded = True
|
24 |
+
|
25 |
+
def search(self, query, top_k=5):
|
26 |
+
self.load_data()
|
27 |
+
query_embedding = self.model.encode([query])
|
28 |
+
similarities = cosine_similarity(query_embedding, self.verse_embeddings)[0]
|
29 |
+
top_indices = np.argsort(similarities)[-top_k:][::-1]
|
30 |
+
|
31 |
+
results = []
|
32 |
+
for idx in top_indices:
|
33 |
+
verse = self.quran_df.iloc[idx]
|
34 |
+
results.append({
|
35 |
+
"surah": verse['surah'],
|
36 |
+
"ayah": verse['ayah'],
|
37 |
+
"text": verse['text'],
|
38 |
+
"similarity": f"{similarities[idx]:.2f}"
|
39 |
+
})
|
40 |
+
return results
|