Update tools/quran_search.py
Browse files- tools/quran_search.py +56 -37
tools/quran_search.py
CHANGED
@@ -5,6 +5,7 @@ from sentence_transformers import SentenceTransformer
|
|
5 |
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
from config import MODEL_NAME, CHUNK_SIZE
|
7 |
import time
|
|
|
8 |
|
9 |
class QuranSearchEngine:
|
10 |
def __init__(self):
|
@@ -13,18 +14,23 @@ class QuranSearchEngine:
|
|
13 |
self.surahs = None
|
14 |
self.all_verses = [] # List of {'surah_id': int, 'verse_num': int, 'text': str}
|
15 |
self.verse_embeddings = None
|
16 |
-
self.model = None
|
17 |
-
print("Starting QuranSearchEngine initialization
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
23 |
def _load_full_quran(self):
|
24 |
-
max_retries =
|
25 |
for attempt in range(max_retries):
|
26 |
try:
|
27 |
-
response = requests.get(f"{self.api_url}surah.json", timeout=
|
28 |
response.raise_for_status()
|
29 |
self.surahs = response.json()
|
30 |
for i, s in enumerate(self.surahs):
|
@@ -33,15 +39,14 @@ class QuranSearchEngine:
|
|
33 |
except Exception as e:
|
34 |
self.logger.error(f"Attempt {attempt + 1}/{max_retries} failed to fetch surahs: {e}")
|
35 |
if attempt == max_retries - 1:
|
36 |
-
self.
|
37 |
time.sleep(2 ** attempt)
|
38 |
-
|
39 |
-
# Load verses
|
40 |
if self.surahs:
|
41 |
for surah in self.surahs:
|
42 |
surah_id = surah['id']
|
43 |
try:
|
44 |
-
response = requests.get(f"{self.api_url}{surah_id}.json", timeout=
|
45 |
response.raise_for_status()
|
46 |
data = response.json()
|
47 |
verses = data['arabic1']
|
@@ -54,18 +59,22 @@ class QuranSearchEngine:
|
|
54 |
except Exception as e:
|
55 |
self.logger.error(f"Failed to fetch verses for surah {surah_id}: {e}")
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
63 |
def _load_all_verses_and_embeddings(self):
|
64 |
if not self.all_verses:
|
65 |
return
|
66 |
|
67 |
try:
|
|
|
68 |
self.model = SentenceTransformer(MODEL_NAME)
|
|
|
69 |
verse_texts = [v['text'] for v in self.all_verses]
|
70 |
self.verse_embeddings = []
|
71 |
for i in range(0, len(verse_texts), CHUNK_SIZE):
|
@@ -73,23 +82,22 @@ class QuranSearchEngine:
|
|
73 |
embeddings = self.model.encode(chunk, convert_to_tensor=False)
|
74 |
self.verse_embeddings.append(embeddings)
|
75 |
self.verse_embeddings = np.vstack(self.verse_embeddings)
|
|
|
76 |
except Exception as e:
|
77 |
-
self.logger.error(f"Failed to compute embeddings: {e}")
|
78 |
self.verse_embeddings = None
|
79 |
-
|
|
|
80 |
def get_surahs(self):
|
81 |
if self.surahs:
|
82 |
-
return [
|
83 |
-
(s['surahNameArabicLong'], s['id'])
|
84 |
-
for s in self.surahs
|
85 |
-
]
|
86 |
return self._load_fallback_surahs()
|
87 |
-
|
88 |
def get_surah_text(self, surah_id):
|
89 |
max_retries = 3
|
90 |
for attempt in range(max_retries):
|
91 |
try:
|
92 |
-
response = requests.get(f"{self.api_url}{surah_id}.json", timeout=
|
93 |
response.raise_for_status()
|
94 |
data = response.json()
|
95 |
verses = data['arabic1']
|
@@ -99,12 +107,29 @@ class QuranSearchEngine:
|
|
99 |
if attempt == max_retries - 1:
|
100 |
return self._load_fallback_verse()
|
101 |
time.sleep(2 ** attempt)
|
102 |
-
|
103 |
def search_verses(self, query, top_k=5):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
if self.verse_embeddings is None or not self.all_verses:
|
105 |
return self._keyword_fallback_search(query, top_k)
|
106 |
|
107 |
try:
|
|
|
108 |
query_embedding = self.model.encode([query], convert_to_tensor=False)
|
109 |
similarities = cosine_similarity(query_embedding, self.verse_embeddings)[0]
|
110 |
top_indices = np.argsort(similarities)[-top_k:][::-1]
|
@@ -113,12 +138,10 @@ class QuranSearchEngine:
|
|
113 |
for idx in top_indices:
|
114 |
verse = self.all_verses[idx]
|
115 |
surah_name = self.surahs[verse['surah_id'] - 1]['surahNameArabicLong']
|
116 |
-
results.append(
|
117 |
-
f"سورة {surah_name} - آية {verse['verse_num']}:\n{verse['text']}"
|
118 |
-
)
|
119 |
return "\n\n".join(results)
|
120 |
except Exception as e:
|
121 |
-
self.logger.error(f"Search failed: {e}")
|
122 |
return "حدث خطأ أثناء البحث. جرب مرة أخرى."
|
123 |
|
124 |
def _keyword_fallback_search(self, query, top_k=5):
|
@@ -131,11 +154,7 @@ class QuranSearchEngine:
|
|
131 |
return "\n\n".join(matches[:top_k]) or "لا توجد نتائج مطابقة."
|
132 |
|
133 |
def _load_fallback_surahs(self):
|
134 |
-
return [
|
135 |
-
("الفاتحة", 1),
|
136 |
-
("البقرة", 2),
|
137 |
-
("آل عمران", 3)
|
138 |
-
]
|
139 |
|
140 |
def _load_fallback_verse(self):
|
141 |
return "بسم الله الرحمن الرحيم\nالله لا إله إلا هو الحي القيوم"
|
|
|
5 |
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
from config import MODEL_NAME, CHUNK_SIZE
|
7 |
import time
|
8 |
+
import sys
|
9 |
|
10 |
class QuranSearchEngine:
|
11 |
def __init__(self):
|
|
|
14 |
self.surahs = None
|
15 |
self.all_verses = [] # List of {'surah_id': int, 'verse_num': int, 'text': str}
|
16 |
self.verse_embeddings = None
|
17 |
+
self.model = None # Deferred loading
|
18 |
+
print("Starting QuranSearchEngine initialization at", time.ctime(), file=sys.stderr) # Debug
|
19 |
+
try:
|
20 |
+
self._load_full_quran()
|
21 |
+
print(f"Surahs loaded: {len(self.surahs) if self.surahs else 0}", file=sys.stderr) # Debug
|
22 |
+
self._load_all_verses_and_embeddings()
|
23 |
+
print(f"Verses loaded: {len(self.all_verses)}", file=sys.stderr) # Debug
|
24 |
+
except Exception as e:
|
25 |
+
self.logger.error(f"Initialization failed: {e}", exc_info=True)
|
26 |
+
print(f"Initialization error: {e}", file=sys.stderr)
|
27 |
+
self._load_fallback_data() # Ensure minimal startup
|
28 |
+
|
29 |
def _load_full_quran(self):
|
30 |
+
max_retries = 5 # Increased retries
|
31 |
for attempt in range(max_retries):
|
32 |
try:
|
33 |
+
response = requests.get(f"{self.api_url}surah.json", timeout=15) # Increased timeout
|
34 |
response.raise_for_status()
|
35 |
self.surahs = response.json()
|
36 |
for i, s in enumerate(self.surahs):
|
|
|
39 |
except Exception as e:
|
40 |
self.logger.error(f"Attempt {attempt + 1}/{max_retries} failed to fetch surahs: {e}")
|
41 |
if attempt == max_retries - 1:
|
42 |
+
self._load_fallback_data()
|
43 |
time.sleep(2 ** attempt)
|
44 |
+
|
|
|
45 |
if self.surahs:
|
46 |
for surah in self.surahs:
|
47 |
surah_id = surah['id']
|
48 |
try:
|
49 |
+
response = requests.get(f"{self.api_url}{surah_id}.json", timeout=15)
|
50 |
response.raise_for_status()
|
51 |
data = response.json()
|
52 |
verses = data['arabic1']
|
|
|
59 |
except Exception as e:
|
60 |
self.logger.error(f"Failed to fetch verses for surah {surah_id}: {e}")
|
61 |
|
62 |
+
def _load_fallback_data(self):
|
63 |
+
self.logger.warning("Falling back to minimal data due to API failure")
|
64 |
+
self.surahs = self._load_fallback_surahs()
|
65 |
+
self.all_verses = [
|
66 |
+
{'surah_id': 1, 'verse_num': 1, 'text': "بِسْمِ ٱللَّهِ ٱلرَّحْمَـٰنِ ٱلرَّحِيمِ"},
|
67 |
+
{'surah_id': 1, 'verse_num': 2, 'text': "ٱلْحَمْدُ لِلَّهِ رَبِّ ٱلْعَٰلَمِينَ"}
|
68 |
+
]
|
69 |
+
|
70 |
def _load_all_verses_and_embeddings(self):
|
71 |
if not self.all_verses:
|
72 |
return
|
73 |
|
74 |
try:
|
75 |
+
print("Attempting to load model...", file=sys.stderr) # Debug
|
76 |
self.model = SentenceTransformer(MODEL_NAME)
|
77 |
+
print("Model loaded successfully", file=sys.stderr) # Debug
|
78 |
verse_texts = [v['text'] for v in self.all_verses]
|
79 |
self.verse_embeddings = []
|
80 |
for i in range(0, len(verse_texts), CHUNK_SIZE):
|
|
|
82 |
embeddings = self.model.encode(chunk, convert_to_tensor=False)
|
83 |
self.verse_embeddings.append(embeddings)
|
84 |
self.verse_embeddings = np.vstack(self.verse_embeddings)
|
85 |
+
print("Embeddings computed successfully", file=sys.stderr) # Debug
|
86 |
except Exception as e:
|
87 |
+
self.logger.error(f"Failed to compute embeddings: {e}", exc_info=True)
|
88 |
self.verse_embeddings = None
|
89 |
+
self.logger.warning("Falling back to keyword-based search due to embedding failure")
|
90 |
+
|
91 |
def get_surahs(self):
|
92 |
if self.surahs:
|
93 |
+
return [(s['surahNameArabicLong'], s['id']) for s in self.surahs]
|
|
|
|
|
|
|
94 |
return self._load_fallback_surahs()
|
95 |
+
|
96 |
def get_surah_text(self, surah_id):
|
97 |
max_retries = 3
|
98 |
for attempt in range(max_retries):
|
99 |
try:
|
100 |
+
response = requests.get(f"{self.api_url}{surah_id}.json", timeout=15)
|
101 |
response.raise_for_status()
|
102 |
data = response.json()
|
103 |
verses = data['arabic1']
|
|
|
107 |
if attempt == max_retries - 1:
|
108 |
return self._load_fallback_verse()
|
109 |
time.sleep(2 ** attempt)
|
110 |
+
|
111 |
def search_verses(self, query, top_k=5):
|
112 |
+
if self.model is None:
|
113 |
+
try:
|
114 |
+
print("Loading model on demand...", file=sys.stderr)
|
115 |
+
self.model = SentenceTransformer(MODEL_NAME)
|
116 |
+
print("Model loaded successfully", file=sys.stderr)
|
117 |
+
verse_texts = [v['text'] for v in self.all_verses]
|
118 |
+
self.verse_embeddings = []
|
119 |
+
for i in range(0, len(verse_texts), CHUNK_SIZE):
|
120 |
+
chunk = verse_texts[i:i + CHUNK_SIZE]
|
121 |
+
embeddings = self.model.encode(chunk, convert_to_tensor=False)
|
122 |
+
self.verse_embeddings.append(embeddings)
|
123 |
+
self.verse_embeddings = np.vstack(self.verse_embeddings)
|
124 |
+
except Exception as e:
|
125 |
+
self.logger.error(f"Failed to load model on demand: {e}", exc_info=True)
|
126 |
+
self.verse_embeddings = None
|
127 |
+
|
128 |
if self.verse_embeddings is None or not self.all_verses:
|
129 |
return self._keyword_fallback_search(query, top_k)
|
130 |
|
131 |
try:
|
132 |
+
print(f"Encoding query: {query}", file=sys.stderr) # Debug
|
133 |
query_embedding = self.model.encode([query], convert_to_tensor=False)
|
134 |
similarities = cosine_similarity(query_embedding, self.verse_embeddings)[0]
|
135 |
top_indices = np.argsort(similarities)[-top_k:][::-1]
|
|
|
138 |
for idx in top_indices:
|
139 |
verse = self.all_verses[idx]
|
140 |
surah_name = self.surahs[verse['surah_id'] - 1]['surahNameArabicLong']
|
141 |
+
results.append(f"سورة {surah_name} - آية {verse['verse_num']}:\n{verse['text']}")
|
|
|
|
|
142 |
return "\n\n".join(results)
|
143 |
except Exception as e:
|
144 |
+
self.logger.error(f"Search failed: {e}", exc_info=True)
|
145 |
return "حدث خطأ أثناء البحث. جرب مرة أخرى."
|
146 |
|
147 |
def _keyword_fallback_search(self, query, top_k=5):
|
|
|
154 |
return "\n\n".join(matches[:top_k]) or "لا توجد نتائج مطابقة."
|
155 |
|
156 |
def _load_fallback_surahs(self):
|
157 |
+
return [("الفاتحة", 1), ("البقرة", 2), ("آل عمران", 3)]
|
|
|
|
|
|
|
|
|
158 |
|
159 |
def _load_fallback_verse(self):
|
160 |
return "بسم الله الرحمن الرحيم\nالله لا إله إلا هو الحي القيوم"
|