File size: 15,281 Bytes
e5bd012 0ee50a8 56b53e7 579a454 56b53e7 579a454 0ee50a8 579a454 0ee50a8 56b53e7 8294e1c 56b53e7 0ee50a8 56b53e7 0ee50a8 3ed7f9a 0ee50a8 56b53e7 0ee50a8 56b53e7 0ee50a8 56b53e7 0ee50a8 56b53e7 0ee50a8 56b53e7 3a00d88 56b53e7 3a00d88 56b53e7 0ee50a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
# import torch
# import transformers
# from transformers import RagRetriever, RagSequenceForGeneration, AutoTokenizer, AutoModelForCausalLM
# import gradio as gr
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# dataset_path = "./5k_index_data/my_knowledge_dataset"
# index_path = "./5k_index_data/my_knowledge_dataset_hnsw_index.faiss"
# tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq")
# retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom",
# passages_path = dataset_path,
# index_path = index_path,
# n_docs = 5)
# rag_model = RagSequenceForGeneration.from_pretrained('facebook/rag-sequence-nq', retriever=retriever)
# rag_model.retriever.init_retrieval()
# rag_model.to(device)
# model = AutoModelForCausalLM.from_pretrained('HuggingFaceH4/zephyr-7b-beta',
# device_map = 'auto',
# torch_dtype = torch.bfloat16,
# )
# def strip_title(title):
# if title.startswith('"'):
# title = title[1:]
# if title.endswith('"'):
# title = title[:-1]
# return title
# # getting the correct format to input in gemma model
# def input_format(query, context):
# sys_instruction = f'Context:\n {context} \n Given the following information, generate answer to the question. Provide links in the answer from the information to increase credebility.'
# message = f'Question: {query}'
# return f'<bos><start_of_turn>\n{sys_instruction}' + f' {message}<end_of_turn>\n'
# # retrieving and generating answer in one call
# def retrieved_info(query, rag_model = rag_model, generating_model = model):
# # Tokenize Query
# retriever_input_ids = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
# [query],
# return_tensors = 'pt',
# padding = True,
# truncation = True,
# )['input_ids'].to(device)
# # Retrieve Documents
# question_encoder_output = rag_model.rag.question_encoder(retriever_input_ids)
# question_encoder_pool_output = question_encoder_output[0]
# result = rag_model.retriever(
# retriever_input_ids,
# question_encoder_pool_output.cpu().detach().to(torch.float32).numpy(),
# prefix = rag_model.rag.generator.config.prefix,
# n_docs = rag_model.config.n_docs,
# return_tensors = 'pt',
# )
# # Preparing query and retrieved docs for model
# all_docs = rag_model.retriever.index.get_doc_dicts(result.doc_ids)
# retrieved_context = []
# for docs in all_docs:
# titles = [strip_title(title) for title in docs['title']]
# texts = docs['text']
# for title, text in zip(titles, texts):
# retrieved_context.append(f'{title}: {text}')
# generation_model_input = input_format(query, retrieved_context)
# # Generating answer using gemma model
# tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
# input_ids = tokenizer(generation_model_input, return_tensors='pt').to(device)
# output = generating_model.generate(input_ids, max_new_tokens = 256)
# return tokenizer.decode(output[0])
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens ,
# temperature,
# top_p,
# ):
# if message: # If there's a user query
# response = retrieved_info(message) # Get the answer from your local FAISS and Q&A model
# return response
# # In case no message, return an empty string
# return ""
# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# # Custom title and description
# title = "🧠 Welcome to Your AI Knowledge Assistant"
# description = """
# Hi!! I am your loyal assistant. My functionality is based on the RAG model. I retrieve relevant information and provide answers based on that. Ask me any questions, and let me assist you.
# My capabilities are limited because I am still in the development phase. I will do my best to assist you. SOOO LET'S BEGGINNNN......
# """
# demo = gr.ChatInterface(
# respond,
# type = 'messages',
# additional_inputs=[
# gr.Textbox(value="You are a helpful and friendly assistant.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# title=title,
# description=description,
# textbox=gr.Textbox(placeholder=["'What is the future of AI?' or 'App Development'"]),
# examples=[["✨Future of AI"], ["📱App Development"]],
# example_icons=["🤖", "📱"],
# theme="compact",
# submit_btn = True,
# )
# if __name__ == "__main__":
# demo.launch(share = True )
# import torch
# import transformers
# from transformers import RagRetriever, RagSequenceForGeneration, AutoTokenizer, AutoModelForCausalLM
# import gradio as gr
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# dataset_path = "./5k_index_data/my_knowledge_dataset"
# index_path = "./5k_index_data/my_knowledge_dataset_hnsw_index.faiss"
# tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq")
# retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom",
# passages_path = dataset_path,
# index_path = index_path,
# n_docs = 5)
# rag_model = RagSequenceForGeneration.from_pretrained('facebook/rag-sequence-nq', retriever=retriever)
# rag_model.retriever.init_retrieval()
# rag_model.to(device)
# model = AutoModelForCausalLM.from_pretrained('HuggingFaceH4/zephyr-7b-beta',
# device_map = 'auto',
# torch_dtype = torch.bfloat16,
# )
# def strip_title(title):
# if title.startswith('"'):
# title = title[1:]
# if title.endswith('"'):
# title = title[:-1]
# return title
# # getting the correct format to input in gemma model
# def input_format(query, context):
# # sys_instruction = f'Context:\n {context} \n Given the following information, generate answer to the question. Provide links in the answer from the information to increase credebility.'
# # message = f'Question: {query}'
# # return f'<bos><start_of_turn>\n{sys_instruction}' + f' {message}<end_of_turn>\n'
# return [
# {
# "role": "system", "content": f'Context:\n {context} \n Given the following information, generate answer to the question. Provide links in the answer from the information to increase credebility.' },
# {
# "role": "user", "content": f"{query}"},
# ]
# # retrieving and generating answer in one call
# def retrieved_info(query, rag_model = rag_model, generating_model = model):
# # Tokenize Query
# retriever_input_ids = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
# [query],
# return_tensors = 'pt',
# padding = True,
# truncation = True,
# )['input_ids'].to(device)
# # Retrieve Documents
# question_encoder_output = rag_model.rag.question_encoder(retriever_input_ids)
# question_encoder_pool_output = question_encoder_output[0]
# result = rag_model.retriever(
# retriever_input_ids,
# question_encoder_pool_output.cpu().detach().to(torch.float32).numpy(),
# prefix = rag_model.rag.generator.config.prefix,
# n_docs = rag_model.config.n_docs,
# return_tensors = 'pt',
# )
# # Preparing query and retrieved docs for model
# all_docs = rag_model.retriever.index.get_doc_dicts(result.doc_ids)
# retrieved_context = []
# for docs in all_docs:
# titles = [strip_title(title) for title in docs['title']]
# texts = docs['text']
# for title, text in zip(titles, texts):
# retrieved_context.append(f'{title}: {text}')
# print(retrieved_context)
# generation_model_input = input_format(query, retrieved_context[0])
# # Generating answer using gemma model
# tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
# input_ids = tokenizer(generation_model_input, return_tensors='pt')['input_ids'].to(device)
# output = generating_model.generate(input_ids, max_new_tokens = 256)
# return tokenizer.decode(output[0])
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens ,
# temperature,
# top_p,
# ):
# if message: # If there's a user query
# response = retrieved_info(message) # Get the answer from your local FAISS and Q&A model
# return response
# # In case no message, return an empty string
# return ""
# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# # Custom title and description
# title = "🧠 Welcome to Your AI Knowledge Assistant"
# description = """
# Hi!! I am your loyal assistant. My functionality is based on the RAG model. I retrieve relevant information and provide answers based on that. Ask me any questions, and let me assist you.
# My capabilities are limited because I am still in the development phase. I will do my best to assist you. SOOO LET'S BEGGINNNN......
# """
# demo = gr.ChatInterface(
# respond,
# type = 'messages',
# additional_inputs=[
# gr.Textbox(value="You are a helpful and friendly assistant.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# title=title,
# description=description,
# textbox=gr.Textbox(placeholder=["'What is the future of AI?' or 'App Development'"]),
# examples=[["✨Future of AI"], ["📱App Development"]],
# #example_icons=["🤖", "📱"],
# theme="compact",
# submit_btn = True,
# )
# if __name__ == "__main__":
# demo.launch(share = True,
# show_error = True)
import torch
import transformers
from transformers import RagRetriever, RagSequenceForGeneration, AutoTokenizer, AutoModelForCausalLM, pipeline
import gradio as gr
device = 'cuda' if torch.cuda.is_available() else 'cpu'
dataset_path = "./5k_index_data/my_knowledge_dataset"
index_path = "./5k_index_data/my_knowledge_dataset_hnsw_index.faiss"
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom",
passages_path = dataset_path,
index_path = index_path,
n_docs = 5)
rag_model = RagSequenceForGeneration.from_pretrained('facebook/rag-sequence-nq', retriever=retriever)
rag_model.retriever.init_retrieval()
rag_model.to(device)
pipe = pipeline(
"text-generation",
model="google/gemma-2-2b-it",
model_kwargs={"torch_dtype": torch.bfloat16},
device=device,
)
def strip_title(title):
if title.startswith('"'):
title = title[1:]
if title.endswith('"'):
title = title[:-1]
return title
def retrieved_info(query, rag_model = rag_model):
# Tokenize Query
retriever_input_ids = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
[query],
return_tensors = 'pt',
padding = True,
truncation = True,
)['input_ids'].to(device)
# Retrieve Documents
question_encoder_output = rag_model.rag.question_encoder(retriever_input_ids)
question_encoder_pool_output = question_encoder_output[0]
result = rag_model.retriever(
retriever_input_ids,
question_encoder_pool_output.cpu().detach().to(torch.float32).numpy(),
prefix = rag_model.rag.generator.config.prefix,
n_docs = rag_model.config.n_docs,
return_tensors = 'pt',
)
# Preparing query and retrieved docs for model
all_docs = rag_model.retriever.index.get_doc_dicts(result.doc_ids)
retrieved_context = []
for docs in all_docs:
titles = [strip_title(title) for title in docs['title']]
texts = docs['text']
for title, text in zip(titles, texts):
retrieved_context.append(f'{title}: {text}')
# Generating answer using gemma model
messages = [
{"role": "user", "content": f"{query}"},
{"role": "system" , "content": f"Context: {retrieved_context}. Use the links and information from the Context to answer the query in brief. Provide links in the answer."}
]
outputs = pipe(messages, max_new_tokens=256)
assistant_response = outputs[0]["generated_text"][-1]["content"].strip()
return assistant_response
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens ,
temperature,
top_p,
):
if message: # If there's a user query
response = retrieved_info(message) # Get the answer from your local FAISS and Q&A model
return response
# In case no message, return an empty string
return ""
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
# Custom title and description
title = "🧠 Welcome to Your AI Knowledge Assistant"
description = """
HI!!, I am your loyal assistant, y functionality is based on RAG model, I retrieves relevant information and provide answers based on that. Ask me any question, and let me assist you.
My capabilities are limited because I am still in development phase. I will do my best to assist you. SOOO LET'S BEGGINNNN......
"""
demo = gr.ChatInterface(
respond,
type = 'messages',
additional_inputs=[
gr.Textbox(value="You are a helpful and friendly assistant.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
title=title,
description=description,
submit_btn = True,
textbox=gr.Textbox(placeholder=["'What is the future of AI?' or 'App Development'"]),
examples=[["Future of AI"], ["App Development"]],
theme="compact",
)
if __name__ == "__main__":
demo.launch(share = True )
|