File size: 10,634 Bytes
e5bd012 56b53e7 ee6ab98 56b53e7 e5bd012 56b53e7 e5bd012 56b53e7 e5bd012 56b53e7 e5bd012 56b53e7 ee6ab98 e5bd012 74d9896 56b53e7 74d9896 56b53e7 e5bd012 56b53e7 1b8a6d1 56b53e7 e5bd012 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
# import torch
# import transformers
# from transformers import RagRetriever, RagSequenceForGeneration, AutoTokenizer, AutoModelForCausalLM
# import gradio as gr
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# dataset_path = "./5k_index_data/my_knowledge_dataset"
# index_path = "./5k_index_data/my_knowledge_dataset_hnsw_index.faiss"
# tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq")
# retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom",
# passages_path = dataset_path,
# index_path = index_path,
# n_docs = 5)
# rag_model = RagSequenceForGeneration.from_pretrained('facebook/rag-sequence-nq', retriever=retriever)
# rag_model.retriever.init_retrieval()
# rag_model.to(device)
# model = AutoModelForCausalLM.from_pretrained('HuggingFaceH4/zephyr-7b-beta',
# device_map = 'auto',
# torch_dtype = torch.bfloat16,
# )
# def strip_title(title):
# if title.startswith('"'):
# title = title[1:]
# if title.endswith('"'):
# title = title[:-1]
# return title
# # getting the correct format to input in gemma model
# def input_format(query, context):
# sys_instruction = f'Context:\n {context} \n Given the following information, generate answer to the question. Provide links in the answer from the information to increase credebility.'
# message = f'Question: {query}'
# return f'<bos><start_of_turn>\n{sys_instruction}' + f' {message}<end_of_turn>\n'
# # retrieving and generating answer in one call
# def retrieved_info(query, rag_model = rag_model, generating_model = model):
# # Tokenize Query
# retriever_input_ids = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
# [query],
# return_tensors = 'pt',
# padding = True,
# truncation = True,
# )['input_ids'].to(device)
# # Retrieve Documents
# question_encoder_output = rag_model.rag.question_encoder(retriever_input_ids)
# question_encoder_pool_output = question_encoder_output[0]
# result = rag_model.retriever(
# retriever_input_ids,
# question_encoder_pool_output.cpu().detach().to(torch.float32).numpy(),
# prefix = rag_model.rag.generator.config.prefix,
# n_docs = rag_model.config.n_docs,
# return_tensors = 'pt',
# )
# # Preparing query and retrieved docs for model
# all_docs = rag_model.retriever.index.get_doc_dicts(result.doc_ids)
# retrieved_context = []
# for docs in all_docs:
# titles = [strip_title(title) for title in docs['title']]
# texts = docs['text']
# for title, text in zip(titles, texts):
# retrieved_context.append(f'{title}: {text}')
# generation_model_input = input_format(query, retrieved_context)
# # Generating answer using gemma model
# tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
# input_ids = tokenizer(generation_model_input, return_tensors='pt').to(device)
# output = generating_model.generate(input_ids, max_new_tokens = 256)
# return tokenizer.decode(output[0])
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens ,
# temperature,
# top_p,
# ):
# if message: # If there's a user query
# response = retrieved_info(message) # Get the answer from your local FAISS and Q&A model
# return response
# # In case no message, return an empty string
# return ""
# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# # Custom title and description
# title = "🧠 Welcome to Your AI Knowledge Assistant"
# description = """
# Hi!! I am your loyal assistant. My functionality is based on the RAG model. I retrieve relevant information and provide answers based on that. Ask me any questions, and let me assist you.
# My capabilities are limited because I am still in the development phase. I will do my best to assist you. SOOO LET'S BEGGINNNN......
# """
# demo = gr.ChatInterface(
# respond,
# type = 'messages',
# additional_inputs=[
# gr.Textbox(value="You are a helpful and friendly assistant.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# title=title,
# description=description,
# textbox=gr.Textbox(placeholder=["'What is the future of AI?' or 'App Development'"]),
# examples=[["✨Future of AI"], ["📱App Development"]],
# example_icons=["🤖", "📱"],
# theme="compact",
# submit_btn = True,
# )
# if __name__ == "__main__":
# demo.launch(share = True )
import torch
import transformers
from transformers import RagRetriever, RagSequenceForGeneration, AutoTokenizer, AutoModelForCausalLM
import gradio as gr
device = 'cuda' if torch.cuda.is_available() else 'cpu'
dataset_path = "./5k_index_data/my_knowledge_dataset"
index_path = "./5k_index_data/my_knowledge_dataset_hnsw_index.faiss"
tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq")
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom",
passages_path = dataset_path,
index_path = index_path,
n_docs = 5)
rag_model = RagSequenceForGeneration.from_pretrained('facebook/rag-sequence-nq', retriever=retriever)
rag_model.retriever.init_retrieval()
rag_model.to(device)
model = AutoModelForCausalLM.from_pretrained('HuggingFaceH4/zephyr-7b-beta',
device_map = 'auto',
torch_dtype = torch.bfloat16,
)
def strip_title(title):
if title.startswith('"'):
title = title[1:]
if title.endswith('"'):
title = title[:-1]
return title
# getting the correct format to input in gemma model
def input_format(query, context):
# sys_instruction = f'Context:\n {context} \n Given the following information, generate answer to the question. Provide links in the answer from the information to increase credebility.'
# message = f'Question: {query}'
# return f'<bos><start_of_turn>\n{sys_instruction}' + f' {message}<end_of_turn>\n'
return [
{
"role": "system", "content": f'Context:\n {context} \n Given the following information, generate answer to the question. Provide links in the answer from the information to increase credebility.' },
{
"role": "user", "content": f"{query}"},
]
# retrieving and generating answer in one call
def retrieved_info(query, rag_model = rag_model, generating_model = model):
# Tokenize Query
retriever_input_ids = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
[query],
return_tensors = 'pt',
padding = True,
truncation = True,
)['input_ids'].to(device)
# Retrieve Documents
question_encoder_output = rag_model.rag.question_encoder(retriever_input_ids)
question_encoder_pool_output = question_encoder_output[0]
result = rag_model.retriever(
retriever_input_ids,
question_encoder_pool_output.cpu().detach().to(torch.float32).numpy(),
prefix = rag_model.rag.generator.config.prefix,
n_docs = rag_model.config.n_docs,
return_tensors = 'pt',
)
# Preparing query and retrieved docs for model
all_docs = rag_model.retriever.index.get_doc_dicts(result.doc_ids)
retrieved_context = []
for docs in all_docs:
titles = [strip_title(title) for title in docs['title']]
texts = docs['text']
for title, text in zip(titles, texts):
retrieved_context.append(f'{title}: {text}')
print(retrieved_context)
generation_model_input = input_format(query, retrieved_context[0])
# Generating answer using gemma model
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
input_ids = tokenizer(generation_model_input, return_tensors='pt')['input_ids'].to(device)
output = generating_model.generate(input_ids, max_new_tokens = 256)
return tokenizer.decode(output[0])
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens ,
temperature,
top_p,
):
if message: # If there's a user query
response = retrieved_info(message) # Get the answer from your local FAISS and Q&A model
return response
# In case no message, return an empty string
return ""
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
# Custom title and description
title = "🧠 Welcome to Your AI Knowledge Assistant"
description = """
Hi!! I am your loyal assistant. My functionality is based on the RAG model. I retrieve relevant information and provide answers based on that. Ask me any questions, and let me assist you.
My capabilities are limited because I am still in the development phase. I will do my best to assist you. SOOO LET'S BEGGINNNN......
"""
demo = gr.ChatInterface(
respond,
type = 'messages',
additional_inputs=[
gr.Textbox(value="You are a helpful and friendly assistant.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
title=title,
description=description,
textbox=gr.Textbox(placeholder=["'What is the future of AI?' or 'App Development'"]),
examples=[["✨Future of AI"], ["📱App Development"]],
#example_icons=["🤖", "📱"],
theme="compact",
submit_btn = True,
)
if __name__ == "__main__":
demo.launch(share = True,
show_error = True)
|