|
import torch
|
|
import transformers
|
|
from transformers import RagRetriever, RagSequenceForGeneration, AutoTokenizer, AutoModelForCausalLM
|
|
import gradio as gr
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
|
|
dataset_path = "./5k_index_data/my_knowledge_dataset"
|
|
index_path = "./5k_index_data/my_knowledge_dataset_hnsw_index.faiss"
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
|
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom",
|
|
passages_path = dataset_path,
|
|
index_path = index_path,
|
|
n_docs = 5)
|
|
rag_model = RagSequenceForGeneration.from_pretrained('facebook/rag-sequence-nq', retriever=retriever)
|
|
rag_model.retriever.init_retrieval()
|
|
rag_model.to(device)
|
|
model = AutoModelForCausalLM.from_pretrained('google/gemma-2-9b-it',
|
|
device_map = 'auto',
|
|
torch_dtype = torch.bfloat16,
|
|
)
|
|
|
|
|
|
|
|
def strip_title(title):
|
|
if title.startswith('"'):
|
|
title = title[1:]
|
|
if title.endswith('"'):
|
|
title = title[:-1]
|
|
|
|
return title
|
|
|
|
|
|
def input_format(query, context):
|
|
sys_instruction = f'Context:\n {context} \n Given the following information, generate answer to the question. Provide links in the answer from the information to increase credebility.'
|
|
message = f'Question: {query}'
|
|
|
|
return f'<bos><start_of_turn>\n{sys_instruction}' + f' {message}<end_of_turn>\n'
|
|
|
|
|
|
def retrieved_info(query, rag_model = rag_model, generating_model = model):
|
|
|
|
retriever_input_ids = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
|
|
[query],
|
|
return_tensors = 'pt',
|
|
padding = True,
|
|
truncation = True,
|
|
)['input_ids'].to(device)
|
|
|
|
|
|
question_encoder_output = rag_model.rag.question_encoder(retriever_input_ids)
|
|
question_encoder_pool_output = question_encoder_output[0]
|
|
|
|
result = rag_model.retriever(
|
|
retriever_input_ids,
|
|
question_encoder_pool_output.cpu().detach().to(torch.float32).numpy(),
|
|
prefix = rag_model.rag.generator.config.prefix,
|
|
n_docs = rag_model.config.n_docs,
|
|
return_tensors = 'pt',
|
|
)
|
|
|
|
|
|
all_docs = rag_model.retriever.index.get_doc_dicts(result.doc_ids)
|
|
retrieved_context = []
|
|
for docs in all_docs:
|
|
titles = [strip_title(title) for title in docs['title']]
|
|
texts = docs['text']
|
|
for title, text in zip(titles, texts):
|
|
retrieved_context.append(f'{title}: {text}')
|
|
|
|
generation_model_input = input_format(query, retrieved_context)
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b-it")
|
|
input_ids = tokenizer(generation_model_input, return_tensors='pt').to(device)
|
|
output = generating_model.generate(input_ids, max_new_tokens = 512)
|
|
|
|
return tokenizer.decode(output[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def respond(
|
|
message,
|
|
history: list[tuple[str, str]],
|
|
system_message,
|
|
max_tokens ,
|
|
temperature,
|
|
top_p,
|
|
):
|
|
if message:
|
|
response = retrieved_info(message)
|
|
return response
|
|
|
|
|
|
return ""
|
|
|
|
|
|
|
|
"""
|
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
|
"""
|
|
|
|
title = "🧠 Welcome to Your AI Knowledge Assistant"
|
|
description = """
|
|
HI!!, I am your loyal assistant, y functionality is based on RAG model, I retrieves relevant information and provide answers based on that. Ask me any question, and let me assist you.
|
|
My capabilities are limited because I am still in development phase. I will do my best to assist you. SOOO LET'S BEGGINNNN......
|
|
"""
|
|
|
|
demo = gr.ChatInterface(
|
|
respond,
|
|
type = 'messages',
|
|
additional_inputs=[
|
|
gr.Textbox(value="You are a helpful and friendly assistant.", label="System message"),
|
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
|
gr.Slider(
|
|
minimum=0.1,
|
|
maximum=1.0,
|
|
value=0.95,
|
|
step=0.05,
|
|
label="Top-p (nucleus sampling)",
|
|
),
|
|
],
|
|
title=title,
|
|
description=description,
|
|
textbox=gr.Textbox(placeholder=["'What is the future of AI?' or 'App Development'"]),
|
|
examples=[["✨Future of AI"], ["📱App Development"]],
|
|
example_icons=["🤖", "📱"],
|
|
theme="compact",
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
demo.launch(share = True )
|
|
|
|
|