Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
3 |
|
4 |
"""
|
5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
"""
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
def respond(
|
11 |
message,
|
12 |
history: list[tuple[str, str]],
|
13 |
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
for val in history:
|
@@ -25,19 +146,11 @@ def respond(
|
|
25 |
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
yield response
|
41 |
|
42 |
"""
|
43 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
@@ -60,4 +173,4 @@ demo = gr.ChatInterface(
|
|
60 |
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# from huggingface_hub import InferenceClient
|
3 |
+
|
4 |
+
# """
|
5 |
+
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
+
# """
|
7 |
+
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
+
|
9 |
+
|
10 |
+
# def respond(
|
11 |
+
# message,
|
12 |
+
# history: list[tuple[str, str]],
|
13 |
+
# system_message,
|
14 |
+
# max_tokens,
|
15 |
+
# temperature,
|
16 |
+
# top_p,
|
17 |
+
# ):
|
18 |
+
# messages = [{"role": "system", "content": system_message}]
|
19 |
+
|
20 |
+
# for val in history:
|
21 |
+
# if val[0]:
|
22 |
+
# messages.append({"role": "user", "content": val[0]})
|
23 |
+
# if val[1]:
|
24 |
+
# messages.append({"role": "assistant", "content": val[1]})
|
25 |
+
|
26 |
+
# messages.append({"role": "user", "content": message})
|
27 |
+
|
28 |
+
# response = ""
|
29 |
+
|
30 |
+
# for message in client.chat_completion(
|
31 |
+
# messages,
|
32 |
+
# max_tokens=max_tokens,
|
33 |
+
# stream=True,
|
34 |
+
# temperature=temperature,
|
35 |
+
# top_p=top_p,
|
36 |
+
# ):
|
37 |
+
# token = message.choices[0].delta.content
|
38 |
+
|
39 |
+
# response += token
|
40 |
+
# yield response
|
41 |
+
|
42 |
+
# """
|
43 |
+
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
+
# """
|
45 |
+
# demo = gr.ChatInterface(
|
46 |
+
# respond,
|
47 |
+
# additional_inputs=[
|
48 |
+
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
+
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
+
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
+
# gr.Slider(
|
52 |
+
# minimum=0.1,
|
53 |
+
# maximum=1.0,
|
54 |
+
# value=0.95,
|
55 |
+
# step=0.05,
|
56 |
+
# label="Top-p (nucleus sampling)",
|
57 |
+
# ),
|
58 |
+
# ],
|
59 |
+
# )
|
60 |
+
|
61 |
+
|
62 |
+
# if __name__ == "__main__":
|
63 |
+
# demo.launch()
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
import gradio as gr
|
68 |
from huggingface_hub import InferenceClient
|
69 |
+
import torch
|
70 |
+
from transformers import RagRetriever, RagSequenceForGeneration, AutoTokenizer
|
71 |
|
72 |
"""
|
73 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
74 |
"""
|
75 |
+
|
76 |
+
def strip_title(title):
|
77 |
+
if title.startswith('"'):
|
78 |
+
title = title[1:]
|
79 |
+
if title.endswith('"'):
|
80 |
+
title = title[:-1]
|
81 |
+
return title
|
82 |
+
|
83 |
+
def retrieved_info(rag_model, query):
|
84 |
+
# Tokenize query
|
85 |
+
retriever_input_ids = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
|
86 |
+
[query],
|
87 |
+
return_tensors="pt",
|
88 |
+
padding=True,
|
89 |
+
truncation=True,
|
90 |
+
)["input_ids"].to(device)
|
91 |
+
|
92 |
+
# Retrieve documents
|
93 |
+
question_enc_outputs = rag_model.rag.question_encoder(retriever_input_ids)
|
94 |
+
question_enc_pool_output = question_enc_outputs[0]
|
95 |
+
|
96 |
+
result = rag_model.retriever(
|
97 |
+
retriever_input_ids,
|
98 |
+
question_enc_pool_output.cpu().detach().to(torch.float32).numpy(),
|
99 |
+
prefix=rag_model.rag.generator.config.prefix,
|
100 |
+
n_docs=rag_model.config.n_docs,
|
101 |
+
return_tensors="pt",
|
102 |
+
)
|
103 |
+
|
104 |
+
# Display retrieved documents including URLs
|
105 |
+
all_docs = rag_model.retriever.index.get_doc_dicts(result.doc_ids)
|
106 |
+
retrieved_context = []
|
107 |
+
for docs in all_docs:
|
108 |
+
titles = [strip_title(title) for title in docs["title"]]
|
109 |
+
texts = docs["text"]
|
110 |
+
for title, text in zip(titles, texts):
|
111 |
+
#print(f"Title: {title}")
|
112 |
+
#print(f"Context: {text}")
|
113 |
+
retrieved_context.append(f"{title}: {text}")
|
114 |
+
|
115 |
+
answer = retrieved_context
|
116 |
+
|
117 |
+
|
118 |
|
119 |
|
120 |
def respond(
|
121 |
message,
|
122 |
history: list[tuple[str, str]],
|
123 |
system_message,
|
|
|
|
|
|
|
124 |
):
|
125 |
+
# Load model
|
126 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
127 |
+
|
128 |
+
dataset_path = "/IndexedDataFiles/my_knowledge_dataset"
|
129 |
+
index_path = "/IndexedDataFiles/my_knowledge_dataset_hnsw_index.faiss"
|
130 |
+
|
131 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
132 |
+
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom",
|
133 |
+
passages_path = dataset_path,
|
134 |
+
index_path = index_path,
|
135 |
+
n_docs = 1)
|
136 |
+
rag_model = RagSequenceForGeneration.from_pretrained('facebook/rag-sequence-nq', retriever=retriever)
|
137 |
+
rag_model.retriever.init_retrieval()
|
138 |
+
rag_model.to(device)
|
139 |
messages = [{"role": "system", "content": system_message}]
|
140 |
|
141 |
for val in history:
|
|
|
146 |
|
147 |
messages.append({"role": "user", "content": message})
|
148 |
|
149 |
+
#response = ""
|
150 |
+
|
151 |
+
response = retrieved_info(rag_model, message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
+
yield response
|
|
|
154 |
|
155 |
"""
|
156 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
|
|
173 |
|
174 |
|
175 |
if __name__ == "__main__":
|
176 |
+
demo.launch()
|