Spaces:
Sleeping
Sleeping
import gradio as gr | |
from torchvision import transforms | |
import torch | |
import torch.nn as nn | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(device) | |
class ResidualBlock(nn.Module): | |
def __init__(self, channels): | |
super(ResidualBlock, self).__init__() | |
self.block = nn.Sequential( | |
nn.Conv2d(channels, channels, kernel_size=3, stride=1, padding=1, bias=False), | |
nn.InstanceNorm2d(channels), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(channels, channels, kernel_size=3, stride=1, padding=1, bias=False), | |
nn.InstanceNorm2d(channels) | |
) | |
def forward(self, x): | |
return x + self.block(x) | |
# 強化版生成器:利用下採樣、殘差塊和上採樣結構 | |
class StrongGenerator(nn.Module): | |
def __init__(self, num_residual_blocks=6): | |
super(StrongGenerator, self).__init__() | |
# 初始卷積層 | |
model = [ | |
nn.Conv2d(3, 64, kernel_size=7, stride=1, padding=3, bias=False), | |
nn.InstanceNorm2d(64), | |
nn.ReLU(inplace=True) | |
] | |
# 下採樣:連續兩次卷積降維 | |
in_channels = 64 | |
for _ in range(2): | |
out_channels = in_channels * 2 | |
model += [ | |
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1, bias=False), | |
nn.InstanceNorm2d(out_channels), | |
nn.ReLU(inplace=True) | |
] | |
in_channels = out_channels | |
# 多個殘差塊 | |
for _ in range(num_residual_blocks): | |
model += [ResidualBlock(in_channels)] | |
# 上採樣:連續兩次反捲積提升解析度 | |
for _ in range(2): | |
out_channels = in_channels // 2 | |
model += [ | |
nn.ConvTranspose2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False), | |
nn.InstanceNorm2d(out_channels), | |
nn.ReLU(inplace=True) | |
] | |
in_channels = out_channels | |
# 輸出層 | |
model += [ | |
nn.Conv2d(in_channels, 3, kernel_size=7, stride=1, padding=3), | |
nn.Tanh() | |
] | |
self.model = nn.Sequential(*model) | |
def forward(self, x): | |
return self.model(x) | |
generator = StrongGenerator().to(device) | |
generator.load_state_dict(torch.load("./generator_epoch_100.pth", map_location=device)) | |
generator.eval() | |
def restore_image(mosaic_image): | |
transform_in = transforms.Compose([ | |
transforms.Resize((256, 256)), | |
transforms.ToTensor(), | |
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)) | |
]) | |
input_tensor = transform_in(mosaic_image).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
restored_tensor = generator(input_tensor) | |
restored_tensor = restored_tensor.squeeze(0).cpu() | |
restored_tensor = (restored_tensor * 0.5 + 0.5).clamp(0, 1) | |
restored_image = transforms.ToPILImage()(restored_tensor) | |
return restored_image | |
iface = gr.Interface( | |
fn=restore_image, | |
inputs=gr.Image(type="pil"), | |
outputs="image", | |
title="Dog Image Mosaic Restoration", | |
description="上傳打碼後的狗狗圖像,模型將嘗試還原原始圖像。" | |
) | |
iface.launch() | |