DeMosaicGAN / app.py
BeanSamuel's picture
new model
cc28da2
import gradio as gr
from torchvision import transforms
import torch
import torch.nn as nn
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
class ResidualBlock(nn.Module):
def __init__(self, channels):
super(ResidualBlock, self).__init__()
self.block = nn.Sequential(
nn.Conv2d(channels, channels, kernel_size=3, stride=1, padding=1, bias=False),
nn.InstanceNorm2d(channels),
nn.ReLU(inplace=True),
nn.Conv2d(channels, channels, kernel_size=3, stride=1, padding=1, bias=False),
nn.InstanceNorm2d(channels)
)
def forward(self, x):
return x + self.block(x)
# 強化版生成器:利用下採樣、殘差塊和上採樣結構
class StrongGenerator(nn.Module):
def __init__(self, num_residual_blocks=6):
super(StrongGenerator, self).__init__()
# 初始卷積層
model = [
nn.Conv2d(3, 64, kernel_size=7, stride=1, padding=3, bias=False),
nn.InstanceNorm2d(64),
nn.ReLU(inplace=True)
]
# 下採樣:連續兩次卷積降維
in_channels = 64
for _ in range(2):
out_channels = in_channels * 2
model += [
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1, bias=False),
nn.InstanceNorm2d(out_channels),
nn.ReLU(inplace=True)
]
in_channels = out_channels
# 多個殘差塊
for _ in range(num_residual_blocks):
model += [ResidualBlock(in_channels)]
# 上採樣:連續兩次反捲積提升解析度
for _ in range(2):
out_channels = in_channels // 2
model += [
nn.ConvTranspose2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False),
nn.InstanceNorm2d(out_channels),
nn.ReLU(inplace=True)
]
in_channels = out_channels
# 輸出層
model += [
nn.Conv2d(in_channels, 3, kernel_size=7, stride=1, padding=3),
nn.Tanh()
]
self.model = nn.Sequential(*model)
def forward(self, x):
return self.model(x)
generator = StrongGenerator().to(device)
generator.load_state_dict(torch.load("./generator_epoch_100.pth", map_location=device))
generator.eval()
def restore_image(mosaic_image):
transform_in = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
])
input_tensor = transform_in(mosaic_image).unsqueeze(0).to(device)
with torch.no_grad():
restored_tensor = generator(input_tensor)
restored_tensor = restored_tensor.squeeze(0).cpu()
restored_tensor = (restored_tensor * 0.5 + 0.5).clamp(0, 1)
restored_image = transforms.ToPILImage()(restored_tensor)
return restored_image
iface = gr.Interface(
fn=restore_image,
inputs=gr.Image(type="pil"),
outputs="image",
title="Dog Image Mosaic Restoration",
description="上傳打碼後的狗狗圖像,模型將嘗試還原原始圖像。"
)
iface.launch()