Spaces:
Running
Running
Commit
·
4db9546
1
Parent(s):
3cffe9d
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from torchvision import transforms
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
print(device)
|
9 |
+
|
10 |
+
class ResidualBlock(nn.Module):
|
11 |
+
def __init__(self, channels):
|
12 |
+
super(ResidualBlock, self).__init__()
|
13 |
+
self.block = nn.Sequential(
|
14 |
+
nn.Conv2d(channels, channels, kernel_size=3, stride=1, padding=1, bias=False),
|
15 |
+
nn.InstanceNorm2d(channels),
|
16 |
+
nn.ReLU(inplace=True),
|
17 |
+
nn.Conv2d(channels, channels, kernel_size=3, stride=1, padding=1, bias=False),
|
18 |
+
nn.InstanceNorm2d(channels)
|
19 |
+
)
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
return x + self.block(x)
|
23 |
+
|
24 |
+
# 強化版生成器:利用下採樣、殘差塊和上採樣結構
|
25 |
+
class StrongGenerator(nn.Module):
|
26 |
+
def __init__(self, num_residual_blocks=6):
|
27 |
+
super(StrongGenerator, self).__init__()
|
28 |
+
# 初始卷積層
|
29 |
+
model = [
|
30 |
+
nn.Conv2d(3, 64, kernel_size=7, stride=1, padding=3, bias=False),
|
31 |
+
nn.InstanceNorm2d(64),
|
32 |
+
nn.ReLU(inplace=True)
|
33 |
+
]
|
34 |
+
|
35 |
+
# 下採樣:連續兩次卷積降維
|
36 |
+
in_channels = 64
|
37 |
+
for _ in range(2):
|
38 |
+
out_channels = in_channels * 2
|
39 |
+
model += [
|
40 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1, bias=False),
|
41 |
+
nn.InstanceNorm2d(out_channels),
|
42 |
+
nn.ReLU(inplace=True)
|
43 |
+
]
|
44 |
+
in_channels = out_channels
|
45 |
+
|
46 |
+
# 多個殘差塊
|
47 |
+
for _ in range(num_residual_blocks):
|
48 |
+
model += [ResidualBlock(in_channels)]
|
49 |
+
|
50 |
+
# 上採樣:連續兩次反捲積提升解析度
|
51 |
+
for _ in range(2):
|
52 |
+
out_channels = in_channels // 2
|
53 |
+
model += [
|
54 |
+
nn.ConvTranspose2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False),
|
55 |
+
nn.InstanceNorm2d(out_channels),
|
56 |
+
nn.ReLU(inplace=True)
|
57 |
+
]
|
58 |
+
in_channels = out_channels
|
59 |
+
|
60 |
+
# 輸出層
|
61 |
+
model += [
|
62 |
+
nn.Conv2d(in_channels, 3, kernel_size=7, stride=1, padding=3),
|
63 |
+
nn.Tanh()
|
64 |
+
]
|
65 |
+
|
66 |
+
self.model = nn.Sequential(*model)
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
return self.model(x)
|
70 |
+
|
71 |
+
generator = StrongGenerator().to(device)
|
72 |
+
|
73 |
+
|
74 |
+
# 載入訓練好的 Generator 模型(此處以第 10 個 epoch 為例,請根據實際情況修改)
|
75 |
+
generator.load_state_dict(torch.load("./generator_epoch_10.pth", map_location=device))
|
76 |
+
generator.eval()
|
77 |
+
|
78 |
+
def restore_image(mosaic_image):
|
79 |
+
# 與訓練時相同的圖像轉換
|
80 |
+
transform_in = transforms.Compose([
|
81 |
+
transforms.Resize((256, 256)),
|
82 |
+
transforms.ToTensor(),
|
83 |
+
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
|
84 |
+
])
|
85 |
+
input_tensor = transform_in(mosaic_image).unsqueeze(0).to(device)
|
86 |
+
with torch.no_grad():
|
87 |
+
restored_tensor = generator(input_tensor)
|
88 |
+
restored_tensor = restored_tensor.squeeze(0).cpu()
|
89 |
+
restored_tensor = (restored_tensor * 0.5 + 0.5).clamp(0, 1)
|
90 |
+
restored_image = transforms.ToPILImage()(restored_tensor)
|
91 |
+
return restored_image
|
92 |
+
|
93 |
+
iface = gr.Interface(
|
94 |
+
fn=restore_image,
|
95 |
+
inputs=gr.Image(type="pil"),
|
96 |
+
outputs="image",
|
97 |
+
title="Dog Image Mosaic Restoration",
|
98 |
+
description="上傳打碼後的狗狗圖像,模型將嘗試還原原始圖像。"
|
99 |
+
)
|
100 |
+
iface.launch()
|